

SCHEME OF EXAMINATION

&

DETAILED SYLLABUS

FOR

BACHELOR OF TECHNOLOGY(B.TECH/M.TECH) DUAL DEGREE

FOR

AUTOMATION AND ROBOTICS (4+2 Years) Offered at University School of Automation and Robotics from Academic Session 2022-23 onwards

University School of Automation and Robotics

GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY, EAST DELHI CAMPUS, SURAJMAL VIHAR-110032

Programme Outcomes

- **1.** *Engineering Knowledge* (PO01): Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **2.** *Problem Analysis* (PO02): Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **3.** *Design/Development of Solutions* (PO03): Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **4.** *Conduct Investigations of Complex Problems* (PO04): Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions for complex problems:
 - a) that cannot be solved by straightforward application of knowledge, theories, and techniques applicable to the engineering discipline as against problems given at the end of chapters in a typical textbook that can be solved using simple engineering theories and techniques;
 - b) that may not have a unique solution. For example, a design problem can be solved in many ways and lead to multiple possible solutions;
 - c) that require consideration of appropriate constraints/requirements not explicitly given in the problem statement such as cost, power requirement, durability, product life, etc.;
 - d) which need to be defined (modeled) within an appropriate mathematical framework; and
 - e) that often require the use of modern computational concepts and tools, for example, in the design of an antenna or a DSP filter
 - **5.** *Modern Tool Usage* (**PO05**): Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
 - 6. *The Engineer and Society* (PO06): Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
 - 7. *Environment and Sustainability* (PO07): Understand the impact of professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
 - 8. *Ethics* (PO08): Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
 - **9.** *Individual and Team Work* (**PO09**): Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
 - **10**.*Communication* (**PO10**): Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
 - 11. Project Management and Finance (PO11): Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. *Life-long Learning* (PO12): Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

Course / Paper Group Codes:

BS: Basic Sciences
HS: Humanities, Social Science, Management
ES: Engineering Sciences
MC: Mandatory Courses
PC: Programme Core, which is course/paper offered in the discipline of the programme as a compulsory paper.
SC: School Core, which is course/paper offered in the discipline of the school as a compulsory paper.
PCE: Programme Core Elective, that is elective course/paper offered in the discipline of the programme.

OAE: Open area elective offered by other schools or open/emerging area elective offered by the school. This allows the student to have two minor specializations also.

Definitions:

Batch: The batch of the student shall mean the year of the first time enrolment of the students in the programme of study in the first semester. Lateral entry students admitted in the 3^{rd} semester / 2^{nd} year shall be designated as students admitted in the previous batch as they are admitted one year later. A student readmitted in a programme of study in a lower/later batch shall be considered as the student of the original batch for calculation of the duration of the study.

Programme of study shall mean Bachelor of Technology.

Acronyms:

APC: Academic programme committee comprising all faculty of the school.

L: Number of Lecture hours per week

T/P: Number of Tutorial / Practical Hours per week

C: Number of credits assigned to a course / paper

COE: Controller of Examinations of the Examinations Division of the University.

SGPA/CGPA: Semester/Cumulative Grade Point Average.

NUES: No end term examination shall be held. The evaluation shall be conducted as per the scheme of examinations as described in the scheme of study.

	Third Semester									
Group	Paper	Paper	L	Р	Credits					
Theory Papers										
BS	BS 201	Linear Algebra & Numerical Methods	4	-	4					
PC	ARA 203	Introduction to Robotics	4	-	4					
PC	ARA 205	Structure and Mechanics of Materials	4	-	4					
PC	ARA 207	Internet of Things	3	-	3					
PC	ARA 209	Analog & Digital Electronics	4	-	4					
HS/MS	HSAR 211*	Engineering Economics*	2	-	2					
		Practical / Viva Voce								
PC	ARA 251	Robotics Lab	-	2	1					
PC	ARI 253	Electronics Lab	-	2	1					
PC	ARA 255	Internet of Things Lab	-	2	1					
PC	ARA 257	Structure and Mechanics of Materials Lab	-	2	1					
		Total			25					

* (NUES): Non-University Exam Subject, Comprehensive evaluation by the concerned teacher, out of 100, as per detailed syllabus.

	Fourth Semester									
Group	Code	Paper	L	Р	Credits					
PC	ARA202	Kinematics and Dynamics of Machines	4	-	4					
PC	ARA 204	Mechatronic Systems and Applications	3	-	3					
PC	ARA 206	Fundamentals of Automation	4	-	4					
PC	ARA 208	Industrial Engineering & Operation Research	4	-	4					
PC	ARA 210	Communication Systems and Networking	4	-	4					
PC	ARA 212	Production Technology	4	-	4					
HS/MS	MSAR 214*	Accountancy for Engineers*	2	-	2					
		Practical / Viva Voce		-						
PC	ARA 252	KOM/DOM Lab	-	2	1					
PC	ARA 254	Mechatronic Systems Lab	-	2	1					
PC	ARA 256	Production Technology Lab	-	2	1					
PC	ARA 258	Communication Systems and Networking Lab	-	2	1					
	-	Total			29					

* (NUES): Non-University Exam Subject, Comprehensive evaluation by the concerned teacher, out of 100, as per detailed syllabus.

Fifth Semester										
Group	Code	Paper	L	Р	Credits					
	Theory Papers									
HS/MS	HSAR 301*	Elements of Indian History for Engineers	2	-	2					
HS/MS	MSAR 303*	Entrepreneurship Mindset	2	-	2					
PC	ARA 305	Cobotics and factory automation	4	-	4					
PC	ARA 307	Robotic component design and simulation	4	-	4					
PC	ARA 309	Advanced Manufacturing Processes	4	-	4					
OAE	ARO XXX	One OAE (Open Area Electives) from the OAE List as per the decision of the APC (Academic Program Committee) of the School (OAE-1)	3	-	3					
PCE	As per the PCE List	One PCE (Program Core Elective) from the PCE List as per the decision of the APC (Academic Program Committee) of the School (PCE-1)	4	-	4					
	-	Practical / Viva Voce		-						
PC	ARA 351	Cobotics and factory automation Lab	-	2	1					
PC	ARA 353	CAD and Simulation Lab	-	2	1					
PC	ART355**	Summer Training (After 4th semester) Report	-	2	1					
МС	ART357#	NSS / NCC / Cultural clubs / Technical Society /Technical club	-	4	2					
Total					28					

* (NUES): Non-University Exam Subject, Comprehensive evaluation by the concerned teacher, out of 100, as per detailed syllabus.

(NUES): Comprehensive evaluation of the students by the concerned coordinator of NCC / NSS / Cultural Clubs / Technical Society / Technical Clubs, out of 100 as per the evaluation schemes worked out by these activity societies, organizations; the coordinators shall be responsible for the evaluation of the same. These activities shall start from the 1st semester and the evaluation shall be conducted at the end of the 5th semester. The detailed document containing the policy for the award of Marks to be prepared by APC

**(NUES): Comprehensive evaluation by a committee of teachers, constituted by the Academic Programme Committee (APC), out of 100. The training shall be of 4 to 6 weeks duration. The training can be under the mentorship of a teacher of the school.

Sixth Semester										
Group	Code	L	T/P	Credits						
Theory Papers										
HS/MS	HSAR 302*	Technical Writing	2	-	2					
PC	ARA 304	Automotive Technology and Green Vehicles	4	-	4					
PC	ARA 306	Advanced Robotics	4	-	4					
PCE	As per the PCE List	One PCE (Program Core Elective) from the PCE List as per the decision of the APC (Academic Program Committee) of the School (PCE-2)	4	-	4					
PCE	As per the PCE List	One PCE (Program Core Elective) from the PCE List as per the decision of the APC (Academic Program Committee) of the School (PCE-3)	4	-	4					
OAE	ARO XXX	One OAE (Open Area Electives) from the OAE List as per the decision of the APC (Academic Program Committee) of the School (OAE-2)	3	-	3					
OAE	ARO XXX	One OAE (Open Area Electives) from the OAE List as per the decision of the APC (Academic Program Committee) of the School (OAE-3)	3	-	3					
		Practical / Viva Voce								
PC	ARA 352	Automotive Technology and Green Vehicles Lab	-	2	1					
PC	ARA 354	Advanced Robotics Lab	-	2	1					
PCE	As per the PCE List	PCE-2 Lab	-	2	1					
PCE	As per the PCE List	PCE-3 Lab	-	2	1					
Total					28					

* (NUES): Non-University Exam Subject, Comprehensive evaluation by the concerned teacher, out of 100, as per detailed syllabus.

Seventh Semester										
Group	Code	Paper	L	T/P	Credits					
Theory Papers										
PC	ARA 401	Totally Integrated Automation	4	-	4					
PC	ARA 403	Additive Manufacturing	4	-	4					
PCE	As per the PCE List	One PCE (Program Core Elective) from the PCE List as per the decision of the APC (Academic Program Committee) of the School (PCE-4)	4	-	4					
PCE	As per the PCE List	One PCE (Program Core Elective) from the PCE List as per the decision of the APC (Academic Program Committee) of the School (PCE-5)	4	-	4					
OAE	ARO XXX	One OAE (Open Area Electives) from the OAE List as per the decision of the APC (Academic Program Committee) of the School (OAE-4)	3	-	3					
OAE	ARO XXX	One OAE (Open Area Electives) from the OAE List as per the decision of the APC (Academic Program Committee) of the School (OAE-5)	3	-	3					
		Practical / Viva Voce								
PC	ARA 451	Totally Integrated Automation Lab		2	1					
PC	ART 453	Additive manufacturing lab		2	1					
PC	ARP 455	Minor Project***	-	-	4					
PC	ART 457	Summer Training (after 6 th semester) Report ^{##}	-	2	1					
		Total		1	29					

(NUES): Comprehensive evaluation by a committee of teachers, constituted by the Academic Programme Committee (APC), out of 100. The training shall be of 4 to 6 weeks duration. The training can be under the mentorship of a teacher of the school.

*** The student shall be allocated a supervisor/guide for project work at the start of 7th semester by the school, preferably, the project can be continued into the 8th semester. In the 7th semester evaluation, the criteria for evaluation shall be the conceptualization of the project work, the background study/literature survey and the identification of objectives and methodology to be followed for the project. In the absence of the supervisor, the Dean of the school can assign the responsibility of the supervisor (for the purpose of examinations) to any faculty of the school. The internal and external bifurcation of the project marks will be as per the bifurcation of marks for the practical examination.

Eight Semester										
Group	Group Code Paper L T/P									
PC/ Project	ARP 452	Major Project- Dissertation****	-	23						
		Or								
PC/ Internship	C/ Internship ARP 452 Internship -Dissertation####									
	Total									

**** The student shall be allocated a supervisor/guide for project work at the start of the semester by the school. The criteria for evaluation shall be the conceptualization of the project work, the background study/literature survey and the identification of objectives and methodology to be followed for the project. In the absence of the supervisor, the Dean of the school can assign the responsibility of the supervisor (for the purpose of examinations) to any faculty of the school. The internal and external bifurcation of the project marks will be as per the bifurcation of marks for the practical examination.

Students have the option to pursue his/her Dissertation on the basis of the Live Projects in a Recognized (CIN No. Required) Company/ Organization. The proposed company/ organization must be approved by the Dean/APC.

Semester-wise List of Program Core Electives (PCE)

- 1. A Program Core Elective (PCE) shall be offered in various semesters as per the scheme of the program.
- 2. A Program Core Elective (PCE) shall be offered if at least 1/3rd of the total program strength opts for the course.

Course ID	Course Name	L	Р	Credits
	Semester 5 (PCE-1)			
ARA 311	Thermal Science	4	-	4
ARA 313	MEMS: Introduction and Applications	4	-	4
ARA 315	Industrial Design and Applied Ergonomics	4	-	4
ARA 317	Introduction to Semiconductor Devices	4	-	4
ARA 319	Automatic Control Systems	4	-	4
ARA 321	Switching Theory and Logic Design	4	-	4
	Semester 6 (PCE-2 & 3)			
ARA 312T	Measurement and Metrology	4	-	4
ARA 312P	Measurement and Metrology Lab	-	2	1
ARA 314T	Autonomous Mobile Robots & UHV	4	-	4
ARA 314P	Autonomous Mobile Robots & UHV Lab	-	2	1
ARA 316T	Computer-Integrated Manufacturing (CIM)	4	-	4
ARA 316P	Computer-Integrated Manufacturing (CIM) Lab	-	2	1
ARA 318T	Electrical Machines and Drive	4	-	4
ARA 318P	Electrical Machines and Drive Lab	-	2	1
ARA 320T	Embedded Systems	4	-	4
ARA 320P	Embedded Systems Lab	-	2	1
ARA 322T	VLSI design for automation	4	-	4
ARA 322P	VLSI design for automation Lab	-	2	1
I	Semester 7 (PCE-4 & 5)	I		1
ARA 411	Soft Robotics	4	-	4
ARA 413	Fluid Systems	4	_	4
ARA 415	Introduction to Smart Materials	4	_	4
ARA 417	Micro-Nano fabrication processes	4	_	4
ARA 419	Field and Service Robotics	4	_	4

Approved by BoS of USAR 15/06/23, Approved Applicable from Batch admitted in Academic Session 2022-23 Onwards

Approved by AC sub-committee 04/07//23

ARA 421	Green Logistics	4	-	4
ARA 423	Design for Additive Manufacturing	4	-	4
ARA 425	Image processing and Robot vision	4	-	4
ARA 427	Robotic Operating System	4	-	4

List of Open Area Electives (OAE) to be offered by USAR

- 1. Open Area Electives (OAE) courses shall be offered by the school (USAR) to all the Programs of B.Tech./M.Tech. (Dual Degree), i.e., AI&DS, AI&ML, A&R, IIoT.
- 2. An Open Area Elective (PCE) course shall be offered for at least 1/3rd of the total program strength.
- 3. The number of elective subjects on offer, may be augmented with prior permission of Chair, BOS.
- 4. A common list of OAEs is given below, however, the list will be augmented in future as per the industry scenario.
- 5. Paper offered as an Open Area Elective (OAE) to AIDS/ AIML / IIOT/ AR branches provided the prerequisite of the paper is satisfied by the student and the same paper is not a core / elective paper of the respective branch. The students may be allowed to study such subject with the approval of the APC of USAR, subject to the condition that the paper is offered in the particular semester by the school.

Semester of Subjects	Paper Code	Paper	Т	Р	С
5 th Semester (To choose any one	ARO 371	3D-Printing Technologies	3	0	3
Elective Subject)	ARO 373	Mobile Application Development	3	0	3
	ARO 375	Analysis Design of Algorithms	3	0	3
	ARO 377	Software Engineering	3	0	3
	ARO 379	Internet of Things	3	0	3
6 th Semester	ARO 372	Operations Management	3	0	3
(To choose any two Elective Subject)	ARO 374	Metaverse	3	0	3
	ARO 376	Industry 4.0	3	0	3
	ARO 378	Supply chain management	3	0	3
	ARO 380	Software Project Management	3	0	3
	ARO 382	Modeling & Simulation	3	0	3
	ARO 384	Database Management Systems	3	0	3
	ARO 386	Introduction to Robotics	3	0	3
7 th Semester	ARO 471	Software Metrics	3	0	3
(To choose any two	ARO 473	Introduction to Electric Vehicle	3	0	3

Approved by BoS of USAR 15/06/23, Approved Applicable from Batch admitted in Academic Session 2022-23 Onwards

Approved by AC sub-committee 04/07//23

Elective Subject)	ARO 475	Web Development	3	0	3
	ARO 477	Modern Manufacturing Processes	3	0	3
	ARO 479	Personal Finance	3	0	3
	ARO 481	Automobile Engineering	3	0	3
	ARO 483	Introduction to smart materials	3	0	3
	ARO 485	Cloud Dew Edge Fog(CDEF) Computing	3	0	3
	ARO 487	Social Media Analytics	3	0	3
	ARO 489	Natural Language Processing	3	0	3

Program Implementation Rules (B.Tech./M.Tech. Dual Degree)

- 1. The examinations, attendance criteria to appear in examinations, promotion and award of the degree shall be governed by the Ordinance-11 of the University. However, credits of courses/papers for OAE / PCE groups shall not be considered for the purpose of promotion from one year of study to the subsequent year of study.
- 2. The minimum duration of the Bachelor of Technology part of the Bachelor /Master of Technology (Dual Degree) programme shall be 4 years (N=4 years) (8 semesters). Lateral entry students shall be admitted in the 2nd year and 3rd semester of the degree programme (effectively in the batch admitted in the first year in the previous academic session and shall be deemed to have been exempted from the courses/papers of the first year of the degree programme. No exemption certificate shall be issued in any case. A specific lateral entry student's minimum duration shall be the same as the minimum duration for the batch in which he/she is admitted as a lateral entry student in the 2nd year.
- 3. The maximum duration of the Bachelor of Technology part of the Bachelor / Master of Technology (Dual Degree) programme shall be 6 years (N+2 years). After completion of N+2 years of study, if the student has appeared in the

papers of all the semesters up to the 8th semester, then a maximum extension of 1 year may be given to the student for completing the requirements of the degree if and only if the number of credits already earned by the student is at least 165 (128, in a case of LE Student) from the (non- honourscomponents). Otherwise, the admission of the student shall stand cancelled. After the period of allowed study, the admission of the student shall be cancelled. A specific lateral entry student's maximum duration shall be the same as the minimum duration for the batch in which he/she is admitted as a lateral entry student in the 2nd year.

- 4. Only after qualifying for the award of the degree of Bachelor of Technology, the student may be allowed to proceed to the Master in Technology part of the Bachelor / Master of Technology (Dual Degree).
- 5. The scheme and syllabi of the Master of Technology part of the Bachelor / Master of Technology (Dual Degree) shall be notified separately. This document pertains to the Bachelor of Technology part of the Bachelor / Master of Technology (Dual Degree) programme only.
- 6. The students shall undergo the following group of Courses / Papers as enumerated in the scheme (*For thestudents admitted in the First Year / First Semester*):

Course Groups		Se	mes	ter	(Cr	edit	s)		Total Credits Mandatory Cred			
	1	2	3	4	5	6	7	8		· ·		
BS	12	20	4						36	18		
HS/MS	5	4	2	2	4	2			19	9		
ES	12	5							17	17		
PC			19	27	15	10	15	23	109	109		
PCE					4	10	8		22	14		
OAE					3	6	6		15	6		
MC					2				2	2		
	29	29	25	29	28	28	29	23	220	175		

TABLE 1: Distribution of Credits. (Project/internship credits are 28 out of the 109 credits for Programme Core (PC) credits, while extra-curricular activities credits are 2 out of 19 credits for humanities/management / social science group (HS) The students shall undergo the following group of Courses / Papers as enumerated in the scheme (For the students admitted as Lateral Entry):

Course Groups		Se	mes	ter	(Cr	edit	s)		Total Credits	Mandatory Credits	
	1	2	3	4	5	6	7	8			
BS			4						4	0	
HS/MS			2	2	4	2			10	6	
ES			-	-	-	-	-	-	-	-	
PC			19	27	15	10	15	23	109	109	
PCE					4	10	8		22	14	
OAE					3	6	6		15	6	
MC					2				2	2	
			25	29	28	28	29	23	162	137	

TABLE 2: Distribution of Credits. (Project/internship credits are 28 out of the 109 credits for Programme Core (PC) credits, while extra-curricular activities credits are 2 out of 10 credits for humanities/management / social science group (HS)

- 7. Mandatory Credits, i.e. 175 (137, in the case of LE Student) specify the number of credits from each subject group to be mandatorily acquired by the student for the award of the degree. See clauses 12 and 13 also. Some of the papers are droppable in the sense that the student may qualify for the award of the degree evenwhen the student has not cleared/passed some of the papers of these groups. However, the student has to earn the minimum credits for the programme of study as specified. See clauses 12 and 13 also.
- The open electives of the OAE group of courses may also be taken through SWAYAM / NPTEL MOOCs platform. 8. The student desirous of doing a MOOC-based course among the OAE group must seek approval from the APC of the school for the same before the commencement of the semester. The APC shall allow the MOOC-based OAE option to the student if and only if the MOOC subject/course being considered for the student is being offered in line with the Academic Calendar applicable. The student shall submit the successful completion certificate from the concerned MOOCs agency with marks to the School for onward transfer to the Examination Division. The Examinations Divisions shall take these marks on record for incorporation in the result of the appropriate semester. These marks/grades of these courses shall be used for calculation of the SGPA/CGPA of the student concerned by the examination division of the University. The degree to the student on fulfilment of other requirements for such cases shall be through clause 13. These MOOC courses taken by the students, if allowed by the APC of the school shall be of 3 credits or more collectively to be against or for one paper slot in the scheme, through MOOCs, though the marks shall be shown individually. That is in one paper slot in the scheme wherever a MOOC course is allowed, the student may register for more than one paper to aggregate 3 credits or more. If the credits of these MOOC Courses, allowed to a student is more than 3, then the maximum credit for the programme shall be as per the Program scheme. Also, in a particular semester, a student may take more than one MOOC course with the approval of the APC to meet the credit requirements of OAE for the semester. The cost of taking the MOOC course is to be borne by the concerned student. The results of the MOOC courses shall be declared separately by the examination division from the result for the papers conducted by the examination division of the University.

- 9. To earn an Honours degree, the student may enrol for 20 credits or more through SWAYAM/ NPTEL MOOCs platform. This point has to be read together with other points especially points 13 and 14, The acquisition of the credits should be completed before the 15th of the July of the admission year plus 4 years (3 Years, in the case of LE Student). That is, if a student is admitted in the year X, then these credits must be acquired through MOOCs by 15th July of the year (X+4) (X+3, in the case of LE Student), no extra duration or time shall be allocated.
- 10. Honours in the degree shall be awarded if and only if at least 20 credits are acquired through MOOCs. To obtain Honours in the programme, the student must apply to the School about the same before the commencement of the 5th semester. The specific courses through MOOCs shall be registered by the student only after approval by the Academic Programme Committee (APC) of the School. The APC shall approve the course if it is not already studied by the student or the student shall not study it in future and adds value to the major area of specialization (which is the degree). The papers for which the student desires to appear for Honours through MOOCs, all papers results shall be submitted by the student to the school for onward transfer to the Examination Division of the University, to be taken on record of the University. The student must submit the passing certificate of the MOOC course. The results of these papers shall be a part of the records of the examinations division, shall be notified by the examinations division of the University, and a separate mark sheet shall be issued by the Examinations divisions. The cost of taking the MOOC course is to be borne by the concerned student. Such courses shall be reflected as additional courses/papers for the student.
- If a student acquires less than 20 credits through MOOCs, following the mechanism specified, then also the results of these papers shall be taken on record as specified above, though no Honours degree shall be awarded.
- The papers through MOOCs for the Honours degree shall not be a part of the set of papers over which the SGPA / CGPA of the student shall be calculated.
- The papers through MOOCs for the Honours degree shall be additional papers studied by the students and are to be taken into account only for award of Honours in the degree programme, if 20 credits are earned through MOOCs as approved by APC, by a student. See Clause 14 also.
- 11. Maximum Credits: At least 220 (162, in the case of LE Student) (Table 1 & Table 2), these are the credits for which the student shall have to study for the non- Honours component of the curriculum. The student has to appear in the examinations for these credits.
- 12. Minimum Credits: At least 200 (145, in the case of LE Student) (out of the 220 and 162 non-Honours paperscredits for Regular and LE students respectively). See clause 7 also.
- 13. The following degree route can be taken by a student for the award of Honours and Non-Honours Degree (also refer to point 14):
 - 1) The students shall be awarded the degree under the following conditions:
 - a) The student has earned the mandatory credits as defined in Table 1 and Clause 7.
 - b) In addition, the total credits (including the above-specified credits) earned by the student is at least 200 (145, in the case of LE Student) credits.
 - The degree nomenclature of the degree shall be as: "Bachelor of Technology (Major Discipline)"; if criterions/points 9 & 10 are not satisfied for Honours. Otherwise, if criterions/points 9 & 10 are met, then the degree shall be an Honours degree and the nomenclature shall be as: "Bachelor of Technology (Major Discipline) (Honours)", if in addition to point 13-1), student fulfils the criteria for Honours as specified at point 10.
 - 2) For the award of an Honours Degree, a student has to earn 220 (162, in the case of LE Student) credits of the program and additional 20 Credits as per Clauses 9 & 10. However, if a student earns less than 220 (162, in the case of LE Student) credits along with 20 credits of MOOCs as per clauses 9 & 10, then that

Approved by AC sub-committee 04/07//23

student will not be given the degree of Honours, and the degree awarded in that case shall be "Bachelor of Technology (Major Discipline)".

- 14. The Honours degree shall only be awarded if the CGPA of the student is above or equal to 7.5 in addition to fulfilment of criterions/points 9, 10 and 13 above and the degree is awarded after the immediate completion of the 4th of the batch from the year of admission. No Honours shall be conferred if the degree requirements are not completed in the minimum duration.
- 15. The scheme of examinations for the B.Tech. Programmes at the affiliated institutions shall be notified separately.
- 16. Pass marks in every paper shall be 40.
- 17. The grading System shall be as per Ordinance 11 of the University.
- 18. The students desirous to continue to the Master of Technology part of the dual degree programme, must first complete the requirements for the award of the Bachelor of Technology degree, before being allowed to proceed for the Master of Technology part.
- 19. Teachers of other Schools, as and when deputed by their school, for teaching the students enrolled in programmes offered by the University School of Automation and Robotics (USAR) shall be a part of the Academic Programme Committee of the school. Such teachers, for all academic matters, including teaching, teachers' continuous evaluation, term end examinations etc. shall be governed by the decisions of the APC of USAR. Similarly, the guest faculty, the visiting faculty and the contract / Ad Hoc faculty as and when deputed to teach students of USAR shall form a part of APC of USAR.
- 20. The medium of instructions shall be English.

DETAILED SYLLABUS FOR 3RD SEMESTER

Paper	code	: BS201									L	Р	Credit
Subjec	t: Li	near Alg	gebra an	d Nume	erical M	ethods					4	0	4
Marking Scheme: Teachers Continuous Evaluation: As per university examination norms from time to time. End Term Theory Examination: As per university examination norms from time to time.													
INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: As per university											ty norms		
 There should be 9 questions in the end term examination question paper. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or s answer type questions. It should be of 15 marks. Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit sh have two questions. However, students may be asked to attempt only 1 question from each unit. Each que should be 15 marks. The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level o questions to be asked should be at the level of the prescribed textbooks. The requirement of (scientific) calculators/ log_tables/ data_tables may be specified if required 												init should h question	
 The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required Course Outcomes [Bloom's Knowledge Level (KL)]: 													
CO1	Abil mult K4]	ity of studies it it is a state of studies it is a state of the state	dents to u , inner pr	understan roduct sp	id, apply ace, norm	and analy and analy as, orthogo	ze the bas onal vecto	ors, linea	ar indepe	inear algebr ndence, spa	anning s	ets. [K1	,K2,K3,
CO2		, K2, K3		inderstan	a numerio	cal linear a	algebra, a	nd to ap	ply these	e technique	s to real	world p	roblems.
CO3	Abi	lity of stu	idents to	numeric	ally solv:	e nonline	ear equati	ions and	d system	of linear o	equatio	ns. [K2,	K3, K4]
CO4		ility of stu erentiatio					obtain int	erpolati	ng polyn	omials and	approxi	mate	
CO/F	0	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO	1	3	3	3	3	3	-	-	-	1	-	1	3
CO	2	3	3	3	3	3	-	-	-	1	-	1	3
CO	3	3	3	3	3	3	-	-	-	1	-	1	3
CO	4	3	3	3	3	3	-	-	-	1	-	1	3
Cou	rse C	Content											No of lectures
	r Al	-	-		-		-		-	nce and inc ce, rank-m	-		[12]

Approved by BoS of USAR 15/6/23,

Approved by AC sub-committee 4/7//23

(without proof), Eigenvalues and eigen vectors of linear operators, Definition and examples of inner product spaces and normed space, Gram Schmidt orthogonalization process.	
Unit II Numerical Linear Algebra: LU factorisation, Cholesky factorisation, Singular value decomposition (SVD), SVD in image processing, Solving least squares using SVD	[8]
Unit III Numerical Methods for solving nonlinear equations and system of linear equations: Methods for solving nonlinear equations- Bisection method, Method of False position, Secant method, Newton-Raphson method. Methods for system of linear equations: Gauss elimination, iterative methods of Gauss Jacobi and Gauss Seidel.	[12]
Unit IV Interpolation, Numerical Integration and differentiation: Interpolation techniques-Lagrange interpolation, Newton Divided difference interpolation, Newton Forward and Backward difference method. Numerical Integration: Trapezoidal, Simpson's 1/3 rule, Simpson's 3/8 rule. Numerical differentiation: Approximation of derivatives using interpolating polynomials.	[12]
Text Books: [T1] Friedberg, Stephen H., Arnold J. Insel, and Lawrence E. Spence. <i>Linear Algebra: Pearson New International edition</i> . Pearson Higher Ed, 2013. [T2] Datta, Biswa N. Numerical linear algebra and applications. SIAM, 2010 [T3] Jain, Mahinder Kumar. <i>Numerical methods for scientific and engineering computation</i> . New Ag International, 2003.	
Reference Books: [R1] Lay, David C. <i>Linear algebra and its applications</i> . Pearson Education, India, 2003. [R2] Sastry, Shankar S. <i>Introductory methods of numerical analysis</i> . PHI Learning Pvt. Ltd., 2012 [R3] Hoffman, Joe D., and Steven Frankel. <i>Numerical methods for engineers and scientists</i> . CRC p 2018.	

Approved by BoS of USAR 15/06/23, Applicable from Batch admitted in Academic Session 2022-23 Onwards

Approved by AC sub-committee 04/07/23 Drivards Page | 20

Paper c	ode: A	RA 203	3								L	T/P	С
Subject	: Intro	duction	to Rol	ootics							4	0	4
Marki	ng Scho	eme:											
Teache	rs Cont	inuous	Evaluat	ion: As p	er univer	sity exar	nination	norms fr	rom time	to time.			
End Te	rm The	ory Exa	aminatio	on: As pe	r universi	ity exami	ination n	orms fro	om time t	o time.			
INSTR	UCTI	ONS T	O PAPI	ER SETT	FERS:		Max	kimum N	/Iarks: A	s per ur	niversity	y nori	ns
\checkmark	There s	hould be	e 9 quest	ions in the	e end term	examinat	tion quest	tion paper	r.				
\checkmark				_	sory and c			labus. Thi	is questio	n should l	have obj	ective	or
			-		ould be of								
A	- + ···· C······ ·······················											-	
	should have two questions. However, students may be asked to attempt only 1 question from each unit. Each question should be 15 marks.												
	-					iow tha la	orning of	iteomos	of course/	nonor Th	o stondo	rd/lov	<u>_1</u>
	The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks.												
A													
	Course Outcomes[Bloom's Knowledge Level (KL)]:												
	Abilit	y of stu	dents to	impleme	ent the me	echanism	s of rob	ot along	with its s	grippers.	Further	more	to
CO1					ot using D								
CO2		y of stu [2,K3]	dents to	utilize th	ne differer	ntial mot	ion and	velocitie	s of robc	ot using j	acobian	•	
					dynamic a	analysis o	of forces	using La	agrangia	n and Ne	wtoniar	1	
CO3		od. [K1 ,											
CO4	Abilit	y of stu	dents to	impleme	ent the on	line and	offline p	orogramn	ning of r	obots. [k	K3,K4]		
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO	12
CO1	3	3	3	3	3	2	1	-	1	3	1	2	
CO2	3	3	3	3	3	1	1	-	2	3	1	2	
CO3	3	3	3	3	3	1	1	-	3	3	2	3	
CO4	3	3	3	3	3	3	2	-	3	3	2	3	
Course	e Conte	ent										No o lectu	

Approved by BoS of USAR 15/06/23,

Approved by AC sub-committee 04/07/23

Applicable from Batch admitted in Academic Session 2022-23 Onwards

 Unit I Fundamentals of Robot Technology: Robot definition, automation and robotics, Robot anatomy, Brief History, Types of robots, Overview of robot subsystems, resolution, repeatability and accuracy, Degrees of freedom of robots, Robot configurations and concept of workspace, Mechanisms and transmission End effectors: Mechanical and other types of grippers, Tools as end effectors, Robot and effector interface, Gripper selection and design. Sensors and actuators used in robotics: Pneumatic, hydraulic and electrical actuators, applications of robots, specifications of different industrial robots Unit II 	[10]
	[10]
 Unit III Dynamic analysis of Force: Lagrangian and Newtonian mechanics, Dynamic equations form multiple –DOF Robots, Static force analysis of Robots, Transformation of forces and moments between coordinate frames, Numericals. Trajectory Planning: Basics of Trajectory planning, Joint space trajectory planning, Cartesian Space trajectories, Numericals. 	[10]
 Unit IV Robot Programming languages & systems: Introduction, the three levels of robot programming, requirements of a robot programming language, problems peculiar to robot programming languages. Off-line programming systems: Introduction, central issues in on-line and offline programming, Programming examples. Application of robots: Typical applications of robots in material transfer, machine loading/unloading; processing operations; assembly and inspection. 	[10]
 Text Books: [T1] Saha, S. K. (2014). Introduction to robotics. Tata McGraw-Hill Education. [T2] Mittal, R. K., & Nagrath, I. J. (2003). Robotics and control. Tata McGraw-Hill. [T3] Fu, K. S., Gonzalez, R., & Lee, C. G. (1987). Robotics: Control Sensing. Vis. Tata McGra Education. [T4] Niku, S. B. (2001). Introduction to robotics: analysis, systems, applications (Vol. 7). New Prentice hall. 	
 Reference Books: [R1] Spong, M. W., & Vidyasagar, M. (2008). Robot dynamics and control. John Wiley & Son [R2] Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G. A., & Burgard, W. (2005). Principl robot motion: theory, algorithms, and implementations. MIT press. [R3] Bhaumik, A. (2018). From AI to robotics: mobile, social, and sentient robots. CRC Press. 	

Approved by AC sub-committee 04/07/23 Applicable from Batch admitted in Academic Session 2022-23 Onwards Page | 22

Paper o	code: A	RA 205	5								L	Т	С
Subject	t: Struc	ture an	d Mecl	nanics of	f Mater	ials					4	0	4
Marki	ng Sch	eme:								•			
Teachers Continuous Evaluation: As per university examination norms from time to time.													
End Term Theory Examination: As per university examination norms from time to time.													
INSTR	INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: As per university norms												
	f-r												
\checkmark				_				syllabus.	This ques	stion shoul	ld have	objectiv	ve or
	short answer type questions. It should be of 15 marks.												
	Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, students may be asked to attempt only 1 question from each unit.												
			-	e 15 mark			J		I S	1			
\succ	The que	estions a	re to be	framed ke	eeping ir	n view th	ne learnir	ng outcom	nes of cour	rse/paper.	The sta	ndard/ l	evel
							-		textbooks				
Course Outcomes [Bloom's Knowledge Level (KL)]:													
CO1	Ability of students to understand the need and selection of different heat treatment processes.[K1, K2]												
CO2	Ability [K2, F		ents to c	alculate t	he stress	and stra	un on the	e material	subjected	to multid	irection	alstress	•
CO3	Abilit K3,K	•	dents to	analyze	and des	sign the	beam su	ubjected	to differe	ent type of	f load.	[K2,	
CO4	Abilit	y of stu	dents to	analyze	and des	sign the	pressur	e vessels	. [K2, K 3	3, K4]			
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO	012
CO1	2	2	2	2	2	1	-	-	-	-	3		3
CO2	3	3	3	3	3	1	-	-	-	-	3		3
CO3	3	3	3	3	3	1	-	-	-	-	3		3
CO4	3	3	3	3	3	1	-	-	-	-	3		3
Course Content										N	o of lect	tures	
Unit I Engine diagran	0	Materia	ls: Intro	oduction	and clas	ssificati	ons of e	ngineerii	ng materi	als, Phase	2	[10)]

Approved by BoS of USAR 15/06/23,

Approved by AC sub-committee 04/07/23

Fe-Fe3C phase diagram, Effect of alloying elements on steel and cast iron, different types of steel and cast iron, Heat Treatment, TTT diagram.	
Compound stress and strains: Introduction, normal stress and strain, shear stress and strain,	
stresses on inclines sections, strain energy, impact loads and stresses, thermal stresses.	
 Unit II Principle stresses: Principal stress and strain, maximum shear stress, Mohr's stress circle, three dimensional states of stress & strain, equilibrium equations, generalized Hook's law, theories of failure. Helical and Leaf Springs: Deflection of springs by energy method, helical springs under axial load and under axial twist (respectively for circular and square cross sections). Columns and Struts: Buckling and stability, slenderness ratio, combined bending and direct stress, middle third and middle quarter rules, struts with different end conditions, Euler's theory for pin ended columns, effect of end conditions on column buckling, Ranking Gordon formulae, examples of columns in mechanical equipments and machines 	[10]
Unit III	
 Shear force and bending moment: Types of beams and their classifications, shear force and bending moment analysis of determinate beams under different loading conditions. Stresses in Beams: Pure Bending, normal stresses in beams, shear stresses in beams due to transverse and axial loads, composite beams. Deflection of Beams: Equation of elastic curve, cantilever and simply supported beams, Macaulay's method, area moment method, fixed and continuous beams. 	[10]
 Unit IV Torsion: Torsion, combined bending & torsion of solid & hollow shafts. Thin cylinders & spheres: Introduction, difference between thin walled and thick-walled pressure vessels, thin-walled spheres and cylinders, hoop and axial stresses and strain, volumetric strain. Thick cylinders: Radial, axial and circumferential stresses in thick cylinders subjected to internal or external pressures, compound cylinders, stresses in rotating shaft and cylinders, stresses due to interference fits. 	[10]
Text Books:	
 [T1] Mechanics of Materials, B C Punamia, Laxmi Publication (2016) [T2] Fluid Mechanics in SI Units. Hibbeler, R.C., Pearson Education India (2017). [T3] Elements of Strength of Materials, Timoshenko S.P., Gere J., East-West affiliated, New D (2002) Reference Books: [R1] Strength of Materials, Bhavikatti S.S., Vikas Publishers (2000) 	elhi
[R2] Mechanics of solids, Popov Eger P., Engg. (1998) Prentice Hall, New Delhi,(1998)	
[R3] Mechanics of Solids, Fenner, Roger.T, U.K.B.C. Publication, New Delhi, (1990)	

_____ _____

Approved by BoS of USAR 15/06/23,

Approved by AC sub-committee 04/07/23 Applicable from Batch admitted in Academic Session 2022-23 Onwards Page | 24

Paper (Code: A	ARA 20	7]	L	T/P	Credits
Subject	: Inter	net of T	Things								3	-	3
Marki	ng Sch	eme:								1			<u>ı</u>
Teache	rs Cont	inuous	Evaluat	ion: As p	per univ	ersity e	xaminat	ion norms	from time t	to time	÷.		
End Te	rm The	ory Exa	aminatio	on: As pe	er unive	rsity ex	aminatio	on norms fr	om time to	time.			
INSTR	RUCTI	ONS TO	O PAPI	ER SET	TERS:		N	Aaximum	Marks: As	s per u	nive	ersity	norms
			-					uestion pap					
\checkmark	-			-	•			syllabus. Tl	his question	should	have	e obje	ctive or
	short answer type questions. It should be of 15 marks.												
	Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, students may be asked to attempt only 1 question from each unit.												
			-	e 15 mark		Jents Inc	ty be ask	eu to attemp	n onry i que	2501011		cacii u	
\blacktriangle	•					ı view tł	ne learnir	g outcomes	of course/pa	aper. T	he sta	andaro	d/ level
	-							rescribed tex	-	1			
A	The req	uiremen	t of (scie	entific) ca	lculator	s/ log-ta	bles/ data	ι-tables may	be specified	d if req	uired	l.	
Course	e Outco	mes [B	loom's	Knowle	dge Lev	vel (KL	.)] :						
001	Ability of students to implement the basic knowledge of Internet of things and protocols.[K1, K2,											K1, K2,	
CO1	K3]												
COA	Abilit	y of stud	dents to	impleme	ent knov	wledge	of IoT in	some of th	ne applicati	on area	as wl	here I	loT can
CO2	be app	plied and	d learn a	about the	e middle	ware fo	or IoT. [ŀ	K1, K2]					
COA	Abilit	y of stu	dents to	utilize t	he conc	epts of	IoT arc	hitecture, I	oT reference	ce mod	lel a	nd ov	rview
CO3	of IoT	`ivity sta	ack arch	itecture.	[K1, K2	2, K3]							
CO4	Ability	y of stu	dents to	utilize a	and imp	lement	solid the	eoretical fo	oundation o	of the I	oT P	latfo	rm and
	Syster	n Desig	gn. [K1,]	K2]				L	1				
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	РО	911	PO12
CO1	3	3	2	3	1	-	-	-	-	1	-		3
CO2	3	3	2	3	1	-	-	-	-	1	-		3
CO3	3	3	2	3	2	-	-	-	-	1	-		3
CO4	3	3	3	3	2	-	-	-	-	1	-		3
Course	e Conte	ent							<u> </u>				No of
													lectures
UNIT I				a -				F F 1					[00]
Introdu	ction t	o lol:	Meann	ng of Ic	oT, Imp	portance	e of lo	I, Elemen	ts of an I	loT ec	cosys	stem,	[08]

Technology drivers, Business drivers, Trends and implications, Overview of Governance, Privacy and Security Issues. Technologies involved in IoT development, Internet web and Networking technologies, Infrastructure, Overview of IoT supported Hardware platforms.

Approved by BoS of USAR 15/06/23,

Approved by AC sub-committee 04/07/23 Applicable from Batch admitted in Academic Session 2022-23 Onwards Page | 25

UNIT II IoT protocols: Protocol Standardization for IoT, Efforts, M2M and WSN Protocols, Role of M2M in IoT, M2M Value Chains, IoT Value Chains, An emerging industrial structure for IoT, SCADA and RFID Protocols, Issues with IoT Standardization, Unified Data Standards Protocols, IEEE802.15.4–BACNet Protocol, Modbus, KNX, Zigbee, Network layer, APS layer – Security	[12]
Unit III IoT Architecture: IoT Open-source architecture (OIC), OIC Architecture & Design principles IoT reference Model and Architecture: Functional View, Information View, Deployment and Operational View, IoT Devices and deployment models, IoTivity: An Open source IoT stack Overview: IoTivity stack architecture, Resource model and Abstraction	[10]
 Unit IV Web of things: Web of Things versus Internet of Things, Two Pillars of the Web, Architecture Standardization for WoT, Platform Middleware for WoT, Unified Multitier WoT Architecture: WoT Portals and Business Intelligence. IoT applications Applications for industry: Future Factory Concepts, Brownfield IoT, Smart Objects, Smart Applications. Study of existing IoT platforms /middleware, IoT- A, Hydra etc. 	[10]
 Text Books: [T1] Zhou, H. (2012). <i>The internet of things in the cloud</i>. Boca Raton, FL: CRC press. [T2] Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds) (2011) <i>Architecting the Internings</i>, Springer [T3] Easley, D., & Kleinberg, J. (2010). <i>Networks, crowds, and markets: Reasoning about a connectedworld</i>. Cambridge university press. [T4] Hersent, O., Boswarthick, D., & Elloumi, O. (2011). <i>The internet of things: Key appli andprotocols</i>. John Wiley & Sons. Reference Books: [R1] Bahga, A., & Madisetti, V. (2014). <i>Internet of Things: A hands-on approach</i>. Vpt.Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everyth 1st Edition, Apress Publications, 2013 [R2] Pfister, C. (2011). <i>Getting started with the Internet of things: connecting sensors and microcontrollers to the cloud</i>." O'Reilly Media, Inc.". 	t highly

Approved by BoS of USAR 15/06/23,

Approved by AC sub-committee 04/07/23 Applicable from Batch admitted in Academic Session 2022-23 Onwards

Paper o	code: A	RA 209)							L	P	Credit
Subject	t: Anal	og and	Digital	Electron	nics					4	0	4
Marki	-										•	
				-		rsity exa						
		-		on: As pe ER SET		sity exam						
						n examina			Aarks: A	s per u	iiversit	/ norms
			-			cover the	-			n should	have obi	ective or
	short answer type questions. It should be of 15 marks.											
\blacktriangleright												•
	should have two questions. However, students may be asked to attempt only 1 question from each un Each question should be 15 marks.											unit.
A	-					view the le	earning o	utcomes o	of course/i	oaper Th	e standa	rd/ level
	-						Ũ			superi m	o standa	
A	of the questions to be asked should be at the level of the prescribed textbooks. The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required											
Course	rse Outcomes[Bloom's Knowledge Level (KL)]:											
CO1	CO1 Analyze characteristics of different types of transistors. [K1, K2]											
CO2	Remember the fundamental concepts of operational amplifier. Understand number systems applications. [K2, K3]										s and its	
CO3					ls and its l , K3, K 4	applicatio 4]	ons to de	sign digi	tal circuit	s, desigi	n Combi	national
CO4	Desig	n Seque	ential lo	gic Circu	its and it	ts applica	tion with	n Digital	Logic Fa	milies []	K2, K3]	
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	2	1	1	-	-	-	-	-	-	-	1
CO2	1	2	3	-	-	-	-	-	-	-	-	2
CO3	1	2	2	-	-	-	-	-	-	-	-	2
CO4	3	2	1	1	-	-	_	-	-	-	-	1
Course	e Conte	ent										No of lectures
BJT: (Current	– Volt	age cha	racteristi	cs, BJT	as an am	plifier a	nd as a	switch, b	rief idea	a of dc	[10]
BJT: Current – Voltage characteristics, BJT as an amplifier and as a switch, brief idea of dc analysis, Biasing circuits, small signal operation and models, single stage BJT amplifiers.												
						ect Trans T Applic				ences b	etween	

 Unit II Introduction to Operational Amplifier: Ideal v/s practical Op-amp, Performance Parameters, Operational Amplifier Application Circuits: Peak Detector Circuit, Comparator, Active Filters, Non-Linear Amplifier, Relaxation Oscillator Number systems: Decimal, Binary, Octal and Hexadecimal – conversion from one system to another, representation of BCD numbers – character representation – character coding schemes – ASCII – EBCDIC etc. Addition, subtraction, multiplication and division of binary numbers. 	[10]
Unit III Introduction — Postulates of Boolean algebra – Canonical and Standard Forms — logicfunctions and logic gates, methods of minimization of logic functions — Karnaugh map method Product- of-Sums Simplification — Don't-Care Conditions Combinational Logic: Combinational Circuits: Analysis Procedure, Design procedure, Binary adder-subtractor, Decimal adder, Binary multiplier, Magnitude comparator, Multiplexers, Demultiplexers, Decoders, Encoders.	[10]
Unit IV Sequential Logic and Its Applications: Storage elements: latches & flip flops, Characteristic Equations of Flip Flops, Flip Flop Conversion, Shift Registers, Counters, Synchronous Counters, Memory & Programmable Logic Devices: Digital Logic Families: TTL, CMOS Logic families, Fan Out, Fan in, Noise Margin; RAM, ROM, PLA, PAL.	[10]
 Text Books: [T1] Adel S. Sedra, Kenneth C. Smith, "Microelectronic Circuits", Oxford University Press, Fifth Edition, 2005. [T2] Thomas L. Floyd, David M. Buchla, Electronics Fundamentals: Circuits, Devices & Applic 8th Edition, Pearson education, 2014. [T3] Mano M. M., Digital Logic & Computer Design, 4/e, Pearson Education, 2013 [T4] Floyd T. L., Digital Fundamentals, 10/e, Pearson Education, 2009. 	
 References: [R1] Donald E. Neaman, "Electronic Circuit, Analysis and Design", Tata McGraw Hill Public Company Limited, Second Edition, 2006. [R2] David A. Bell, "Electronic devices and Circuits", 5th Edition, Oxford University Press India, [R3] Tokheim R. L., Digital Electronics Principles and Applications, 7/e, Tata McGraw Hill. [R4] Leach D, Malvino A P, Saha G, Digital Principles and Applications, 8/e, McGraw Hill 	C

_____ _____

Approved by BoS of USAR 15/06/23,

Approved by AC sub-committee 04/07/23 Applicable from Batch admitted in Academic Session 2022-23 Onwards Page | 28

DETAILED SYLLABUS FOR 4TH SEMESTER

Approved by BoS of USAR 15/06/23, Approved by AC sub-committee 04/07/23 Applicable from Batch admitted in Academic Session 2022-23 Onwards Page | 29

Paper o	code: A	RA 202	2								L	T/P	С
Subject	t: Kine	matics a	and Dy	namics o	of Macł	nines					4	0	4
Marki	0												
Teachers Continuous Evaluation: As per university examination norms from time to													
time.Er	me.End Term Theory Examination: As per university examination norms from time to												
time.													
INSTR	RUCTI	ONS T	O PAPI	ER SET	TERS:		Ν	Aaximu	n Mark	ks: As pe	r univ	ersity	y norms
A	I												
~	Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective orshort answer type questions. It should be of 15 marks.												
~								ist of fou	r units as	s per the s	vllabus	. Evei	ry unit
	Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, students may be asked to attempt only 1 question from each												
	unit.Each question should be 15 marks.												
\blacktriangleright	The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level												
	of the questions to be asked should be at the level of the prescribed textbooks.												
\blacktriangleright													
Course	e Outco	omes [B	loom's	Knowle	dge Le	vel (KL	.)] :						
CO1	Ability	of stud	ents to a	nalyze th	e assemt	oly with	respect t	o the disp	lacemen	t, velocity	, andac	celer	ation at
COI	any po	int in a l	link of a	mechanis	sm. [K2	, K3]							
CO2	Ability	of stud	ents to a	nalyze the	e kinema	atics and	dynamic	cs of gear	/gear trai	in. [K2, K	3, K4]		
CO3			dents to K2, K3		and and	elimina	ate the ir	iter/intra	cycle fl	uctuatior	ns of I C	C	
COA	Abilit	y of stu	dents to	analyze	the unb	alancin	g of IC	Engine a	nd desig	gn the bal	lanced	syste	m.
CO4	[K2,K	[3]											
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO	11	PO12
CO1	3	3	2	2	2	2	-	-	-	-	3		3
CO2	3	3	3	3	3	2	-	-	-	-	3		3
CO3	3	3	3	3	3	2	-	-	-	-	3		3
CO4	3	2	2	2	3	2	-	-	-	-	3		3
Course	e Conte	ent									No o	of lectu	ures

Approved by BoS of USAR 15/06/23,

Approved by AC sub-committee 04/07/23 Applicable from Batch admitted in Academic Session 2022-23 Onwards Page | 30

Unit I Mechanisms: Definition–Machine and Structure–Kinematic link, pair, and chain–classification of Kinematic pairs–Constraint and motion–Degrees of freedom–Slider crank–single and double– Crank rocker mechanisms– Inversions, applications Introduction to Kinematic analysis and synthesis of simple mechanisms– Calculation of velocity and acceleration of simple mechanisms.	[10]
Unit II Gears and Cams: Gear – Types and profile – nomenclature of spur and helical gears – laws of gearing – interference – the requirement of the minimum number of teeth in gears – gear trains – simple, compound and reverted gear trains – determination of speed and torque in epicyclic gear trains–cams different types of followers–Cam–Types of cams and followers –Cam design for different follower motions.	[10]
Unit III Flywheel and Governors: Turning moment and crank movement diagrams, dynamics of simple horizontal and vertical engine. Fluctuation of speed, co-efficient of fluctuation of speed and energy, Punching press. Simple problems; Governors: Functions, types and characteristics of governors, Sensitivity, stability, isochronism and hunting of governors, governor effort and controlling force curve, effect of sleeve friction. Numerical problems. Gyroscope: Definition, axis of spin and precision, gyroscopic couple and effect on movement of ships and vehicles, stability of two and four-wheel automobile; Numerical problems.	[10]
Unit IV Balancing: Static and dynamic balancing – single and several masses in different planes –primary and secondary balancing of reciprocating masses – Balancing of single and multi-cylinder engines. Vibrations: free vibrations – Equations of motion – natural Frequency – Damped Vibration – bending critical speed of simple shaft	[10]
 Text Books: [T1] Theory of Machines, Bansal R.K, Laxmi Publications Pvt Ltd., NewDelhi,20th edition (20) [T2] Theory of machines, Rattan S.S., Tata McGraw Hill publishing Co., New Delhi, 2nd edition (2011) [T3] Theory of Machines and Mechanisms, Gosh A and Mallick A.K., Affiliated East West pre (2009) Reference Books: [R1] The Theory of machines, Malhotra D.R. and Gupta H.C, Satya Prakasam, Tech. India Publications (2008) [R2] Mechanism and machine theory, Dukkipati, R.V., Bohem press (2007). [R3] Theory of Machines and Mechanisms, Shigley J.E. and Uicker J.J., McGraw Hill (2006) 	on

_____ _____

Approved by BoS of USAR 15/06/23,

Approved by AC sub-committee 04/07/23 Applicable from Batch admitted in Academic Session 2022-23 Onwards Page | 31

Paper code: ARA 204								L	T/P	C			
Subject: Mechatronic Systems and Applications3									3	-	3		
Marking Scheme: Teachers Continuous Evaluation: As per university examination norms from time to time. End Term Theory Examination: As per university examination norms from time to time.													
INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: As per universit									rsity n	orms			
 There should be 9 questions in the end term examination question paper Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 15 marks. Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, students may be asked to attempt only 1 question from each unit. Each question should be 15 marks. The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks. 													
 The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required Course Outcomes: [Bloom's Knowledge Level (KL)]: 													
CO1: Ability of students to explain the basic fundamentals of mechatronics. [K1, K2]													
CO2:	Ability of students to select appropriate sensors and actuators, and apply signal conditioning to monitor and control of a mechatronics system. [K1, K2, K3, K4]												
CO3:		Ability of students to understand about the basics of microprocessor, microcontroller and PLCs, and develop their programming concepts for mechatronics system development. [K1, K2, K4, K6]											
CO4:	Ability of students to apply the system modelling concepts to model and analyze the mechatronics systems. [K3, K4]												
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO1	1 P	PO12
CO1	3	2	2	3	2	-	-	-	3	1	2		3
CO2	3	3	3	3	2	-	-	-	3	1	2		3
CO3	3	3	3	3	3	-	-	-	3	1	3		3
CO4	3	3	3	3	2	-	-	-	3	1	3		3
Course Content											No of Lect.		
Unit I													[9]

Approved by AC sub-committee 04/07/23

Applicable from Batch admitted in Academic Session 2022-23 Onwards

Introduction: Definition of mechatronics, measurement system, control systems, microprocessor-based controllers, mechatronics approach. Sensors and Transducers: Introduction, Performance terminology, static and dynamic characteristics of transducers, selection of sensors. Sensor for measurement of displacement, position, motion, force, torque, strain gauge, temperature, pressure and flow. Optical encoder, tactile and proximity, ultrasonic sensor & transducers, opto-electrical sensor, gyroscope. Smart sensors. Unit II [9] Actuators: Definition, example, types, selection. Mechanical Actuation System: Cams, Gear trains, Ratchet and Pawl, Belt and chain drives, Bearings. Hydraulic and Pneumatic Actuation System: Pneumatic actuator. Electro-pneumatic actuator. Hydraulic actuator, process control valves. Electrical actuating systems: solidstate switches, solenoids, voice coil; electric motors; DC motors, AC motors, single phase motor; 3-phase motor; induction motor; synchronous motor; stepper motors. Piezoelectric actuator: characterization, operation, and fabrication; shape memory alloys. Signal Conditioning: Signal conditioning, filtering digital signal, multiplexers, data acquisition, digital signal processing, pulse modulation, data presentation systems. [9] Unit III Microprocessors & Microcontroller: Introduction, Microprocessor building blocks, combinational and sequential logic elements, memory, timing and instruction execution fundamentals with example of primitive microprocessor. Embedded System: Introduction and Applications. Microcontrollers for mechatronics: Introduction to Microcontroller and its families, Criteria for Choosing Microcontroller. Microcontroller Architecture, Microcontroller programming interfaces. **Programmable logic controllers:** Programmable logic controllers (PLC) Structure, Input / Output Processing, principles of operation, PLC versus Microcontrollers, Programming on PLC. [9] Unit IV System Models: Mathematical models, Mechanical, Electrical, Hydraulic and Thermal Systems, Modelling of dynamic systems. Design of Mechatronics systems: Stages in designing mechatronics system, Traditional and Mechatronic design. Dynamic response of systems, transfer function and frequency response, closed loop controllers. Mechatronics system applications: Boat Auto pilot, Pick and place robots, high speed tilting train, automatic car park system, coin counter, engine management system, automated guided vehicle, autonomous mobile system, antilock brake system control, Auto-Focus Camera, Printer, Domestic Washing Machine, Optical Mark Reader, Bar Code Reader. **Text Books:** [T1] W.Bolton, (2003) Mechatronics, Pearson education, second edition, fifth Indian Reprint. [T2] Introduction to Mechatronics and Measurement Systems by David G Alciatore and Michel **BiHistand**

Approved by BoS of USAR 15/06/23,Approved by AC sub-committee 04/07/23Applicable from Batch admitted in Academic Session 2022-23 OnwardsPage | 33

[T3] Principles, Concepts and Applications - Mechatronics by Nitaigour and Premchand Mahilik [T4] Smaili, A., & Mrad, F. (2008). Mechatronics: Integrated technologies for intelligent machines. OxfordUniversity Press.

Reference Books:

[R1] R.K Rajput, (2007) A textbook of mechatronics, S. Chand & Co.[R2] D. A. Bradley, Dawson D., Buru N.C. and Loader A.J, (1993) Mechatronics, ChapmanandHall.

[R3] Necsulescu, D. S. (2002). *Mechatronics*. Pearson College Division.

[R4] Kamm, L. J. (1995). Understanding electro-mechanical engineering: an introduction to mechatronics (Vol. 3). John Wiley & Sons.

[R5] Nitaigour Premchand Mahadik, (2003) *Mechatronics*, Tata McGraw-Hill publishing CompanyLtd, 2003.

Approved by BoS of USAR 15/06/23, App. Applicable from Batch admitted in Academic Session 2022-23 Onwards

Approved by AC sub-committee 04/07/23 Onwards Page | 34

Paper code: ARA 206									L	T/P	С		
Subject: Fundamental of Automation										4	0	4	
Marking Scheme:													
Teachers Continuous Evaluation: As per university examination norms from time to time.													
End Term Theory Examination: As per university examination norms from time to time.													
INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: As per university												ersity	norms
 There should be 9 questions in the end term examination question paper. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 15 marks. Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit 													
 should have two questions. However, students may be asked to attempt only 1 question from each unit. Each question should be 15 marks. The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks. The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required. 													
Course Outcomes[Bloom's Knowledge Level (KL)]:													
CO1	Ability of students to identify suitable automation hardware for the given application. [K1,K2]											,K2]	
CO2	Ability of students to identify potential areas of automation and material handling system [K1,K2,K3]												
CO3	Ability of students to utilize understanding of manufacturing systems and mathematical models of production lines. [K1,K2,K3]											odels of	
CO4	Ability of students to practically. [K3,K4]												
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO	1	PO12
CO1	3	3	3	3	3	2	1	-	1	3	1		2
CO2	3	3	3	3	3	1	1	-	2	3	1		2
CO3	3	3	3	3	3	1	1	-	3	3	2		3
CO4	3	3	3	3	3	3	2	-	3	3	2		3
									No of lectures				

_____ _____

Approved by BoS of USAR 15/06/23,

Approved by AC sub-committee 04/07/23

Unit I	[10]					
Concepts and Scope of Automation:						
Definition of Automation, Socio economic impacts of automation, Types of Automation, Low-						
Cost Automation and Automation Strategies, Types of Production, Functions of Manufacturing,						
Organization and Information Processing in Manufacturing, Production Concepts and						
Mathematical Models.						
Fixed Automation:						
Automated Flow lines, Methods of Workpart Transport, Transfer Mechanism – Continuous						
Transfer, intermittent transfer and Indexing Mechanism, Operator-Paced Free Transfer Machine,						
Buffer Storage, Control Functions and Automation for Machining Operations, Design and						
Fabrication Considerations.						
Automation Application:						
Home, Library, Electronics Assembly, Mechanical Assembly, Material Removal, Quality Control						
and Inspection, Material Handling and Storage, Laboratory Automation.						
Unit II	[10]					
Automated Materials Handling:						
The material handling function, Types of Material Handling Equipment, Design of the System,						
Conveyor Systems, Automated Guided Vehicle Systems.						
Automated Storage Systems:						
Storage System Performance, Automated Storage/ Retrieval system, Carousel Storage Systems,						
Work-in process storage, Interfacing Handling and Storage with Manufacturing.						
Automated Manufacturing Systems:						
Components, Classification and overview of manufacturing systems, Cellular Manufacturing,						
Flexible Manufacturing System (FMS), FMS and its planning and implementation, automated						
assembly system - design and types of automated assembly systems, Analysis of Multi Station,						
and Single Station assembly machine.						
Unit III	[10]					
Control Technologies in Automation:						
Industrial Control Systems, Process Industries Verses Discrete- Manufacturing Industries,						
Continuous Verses Discrete Control, Computer Process Control and its Forms. Computer Based						
Industrial Control: Introduction & Automatic Process Control, Building Blocks of Automation						
System: LAN, Analog & Digital I/O Modules, SCADA System & RTU.						
Automated Assembly Systems:						
Design for Automated Assembly, Types of Automated Assembly Systems, Part Feeding Devices,						
Analysis of Multistation Assembly Machines, Analysis of a Single Station Assembly Machine.						
Unit IV	[10]					
Automated Inspection and Testing:						
Inspection and testing, Statistical Quality Control, Automated Inspection Principles and Methods,						
Sensor Technologies for Automated Inspection, Coordinate Measuring Machines, Other Contact						
Inspection Methods, Machine Vision, Other optical Inspection Methods.						
Programmable Logic Controllers (PLCs):						
Introduction, Micro PLC, Programming a PLC, Logic Functions, Input & Output Modules, PLC						
Processors, PLC Instructions, Documenting a PLC System, Timer & Counter Instructions,						
rocessors, i be instructions, bocumenting a i be system, rimer & counter instructions,						

Comparison & Data Handling Instructions, Sequencing Instructions, Mask Data Representation, Typical PLC Programming Exercises for Industrial Applications.

Case Study:

Toyota Production Systems, Industrial Automation, Flexible Pipe Sorting and Palletizing System, EGR Valve Assembly Line, Trends in manufacturing.

Text Books:

- [T1] Groover, M.P. (2016). Automation, production systems and computer integrated manufacturing.
- [T2] Ashfal, R. (1992). Robots and Manufacturing Automation, John Wiley & Son.
- [T3] Anatomy of Automation, Amber G.H & P.S. Amber, PrenticeHall.

Reference Books:

- [R1] Computer Based Industrial Control, Krishna Kant, EEE-PHI
- [R2] Principles and Applications of PLC, Webb John, Mcmillan 1992
- [R3] An Introduction to Automated Process Planning Systems, Tiess Chiu Chang & Richard A. Wysk

Approved by BoS of USAR 15/06/23, App. Applicable from Batch admitted in Academic Session 2022-23 Onwards

Paper o	ode: A	RA 208	3								L	T/P	С
Subject	: Indus	strial E	nginee	ring and	Opera	tion Re	search				4	0	4
Marki	ng Sche	eme:											1
Teache	rs Cont	inuous	Evaluat	tion: As	per univ	versity e	xaminatio	on norms	from tin	ne to tim	ne.		
End Te	rm The	ory Exa	aminatio	on: As pe	er unive	rsity ex	aminatior	n norms fr	om time	to time	•		
INSTR	RUCTIO	ONS T	O PAP	ER SET	TERS:		Μ	aximum	Marks:	As per	unive	ersity	y norms
A A A A	Question short and Apart fr should I Each que of the que of the que of the req e Outco Ability product Ability [K2, F	n No. 1 Iswer typ rom Que have two lestions a uestions a uestions uiremen mes[Bl y of stud ctivity. y of stud X3]	should be pe question Not o question Not o question hould be re to be s to be as at of (scir- loom's idents to [K1, K dents to	be compu ions. It sh ons. I, the re- ons. Howe e 15 mark framed ke sked shou entific) ca Knowlee o unders 2]	lsory and nould be est of the ever, stu as. eeping in ld be at to alculator dge Lev tanding e the pro	d cover t of 15 ma e paper s dents ma n view th the level s/ log-tal vel (KL) the indu-	he entire s arks. hall consis ay be asked ne learning of the pre bles/ data-)]: ustrial englised	estion pap syllabus. The st of four u d to attemp g outcomes scribed tex tables may gineering escriptive	his questi nits as pe ot only 1 of course tbooks. be speci principle form int	er the syl question e/paper. ' fied if re es that in to a math	labus. from The st quired nfluer	Ever each anda I. 	ry unit unit. rd/ level he
CO4	Abilit	y of stu	dents to		nent kno			from vario					for
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO1	1	PO12
CO1	3	3	3	3	3	2	1	-	1	3		1	2
CO2	3	3	3	3	3	1	1	-	2	3		1	2
CO3	3	3	3	3	3	1	1	-	3	3		2	3
CO4	3	3	3	3	3	3	2	-	3	3		2	3
Course	e Conte	nt				1	I		1		<u> </u>		No of lectur
							0	g, Scope of al and part		0		<u> </u>	[10]

Approved by BoS of USAR 15/06/23, Applicable from Batch admitted in Academic Session 2022-23 Onwards

and remedy for poor productivity.	
Unit II Job analysis and Work Measurement Systems: Work System Design: Taylor's scientific management, Gilbreth's contributions; method study, micro-motion study, principles of motion economy; work measurement - stop watch time study, micro motion and memo motion, work sampling, standard data, PMTS; ergonomics; job evaluation, merit rating, incentive schemes, and wage administration.	[10]
Unit III Production Planning and Control: Types and characteristics of production systems, Objectives and functions of Production, Planning & Control, Routing, Scheduling and Operations scheduling, production scheduling, job shop scheduling problems, sequencing problems, scheduling tools and techniques, Loading, Dispatching and its sheets & Gantt charts.	[10]
Unit IV Linear programming: Formulations – graphical solutions, simplex method, Transportation model, Assignment model. Network models – project networks – CPM/PERT, Sequencing model – 2 machines n jobs, m machines n jobs-n jobs 2 machines.	[10]
 Text Books: [T1] Industrial Engineering and Management; B. Kumar, Khanna Publication, ISBN81740919 2011. [T2] Introduction to work Study, International Labour Office, Geneva, 3rd edition, Oxford and publishing Co. Pvt. Ltd, New Delhi, ISBN- 8120406028, 2008. [T3] Industrial Engineering and Production Management, Martand Telsang, S Chand Publication Reference Books: [R1] Industrial Engineering and Management, Pravin Kumar, Pearson Education, 1st edition, I 9789332543560, 2015. [R2] Operation Research, J K Sharma, Macmillan Publisher. [R3] Operation Research, D S Hira and P K Gupta, S Chand Publication. 	l IBH on.

_____ _____

Approved by BoS of USAR 15/06/23, Approved by AC sub-committee 04/07/23 Applicable from Batch admitted in Academic Session 2022-23 Onwards

Page | 39

Paper (Code: A	RA 21	0								L	T/P	С
Subject:	Comn	nunicat	ion syst	tems and	l Netwo	orking					4	-	4
Marki	ng Sche	eme:											<u> </u>
				-		•		ion norms					
		-				rsity ex		on norms f					
				ER SET				Aaximum		As per	unive	ersity	norms
A A A A	Question short ar Apart fr should I Each que of the que of the que of the req e Outcon Under Evalua	on No. 1 aswer typ com Que have two nestions a uestions a uestions uiremen omes [B estand the ate the p	should be pe questic stion No o questic hould be re to be to be as t of (scie loom's ne basic	e compul ons. It sh o. 1, the re- ons. Howe e 15 mark framed ke ked shou entific) ca Knowle concepts ance of f	sory and ould be est of the ever, stud s. eeping ir id be at t ilculator: dge Lev s of ana fundame	dents ma of 15 ma paper s dents ma n view th the level s/ log-tal vel (KL log com ental blo derivir	he entire arks. hall cons by be ask he learnin of the pr bles/ data bles/ data bles/ data bles/ data	uestion pap syllabus. T ist of four ed to attem ag outcome rescribed te a-tables ma tion system stituting v rent pulse	This quest units as p pt only 1 s of cours xtbooks. y be spec m. various a	er the syl question se/paper. ' ified if re ngle mod	labus. from The st quired dulati	Every each u andar 1.	y unit ınit. d/ level
CO4	Under	stand a	bout the	basic co	oncept o	of Comr	nunicati	on Netwo	rks.				
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO	11	PO12
CO1	3	2	-	-	1	-	-	-	-	-	-		2
CO2	3	2	-	-	1	-	-	-	-	-	-		2
CO3	3	3	3	-	-	-	-	-	-	1	2		2
CO4	3	2	-	3	-	-	-	-	-	-	-		-
Course	e Conte	ent											No of lectures
	of Sign		•				•	ms, Fouri d represer					[10]

Approved by BoS of USAR 15/06/23,

Approved by AC sub-committee 04/07/23 Applicable from Batch admitted in Academic Session 2022-23 Onwards Page | 40

Amplitude Modulation (AM): Double Sideband - Suppressed carrier AM, Conventional AM, Single sideband AM, Vestigial sideband AM, Quadrature AM	
UNIT II Angle Modulation: Angle Modulation fundamentals, Frequency Modulation – Modulation index	
and sidebands, Narrowband FM, Wideband FM, Principles of Phase Modulation, Frequency Modulation verses Amplitude Modulation, FM demodulation, Frequency Division Multiplexing,	
Applications of FM.	[10]
Unit III	
Signal Sampling and Analog Pulse Communication: Ideal Sampling, Pulse Amplitude	
Modulation, Pulse Width Modulation, Pulse Position Modulation.	[10]
Digital Communication Techniques: Quantization, Digital Transmission of Data, Parallel and Serial Transmission, Data Conversion, Time Division Multiplexing, Pulse Code Modulation,	
Delta Modulation. Modem Concepts and Methods – FSK, BPSK, Error Detection and Correction.	
Unit IV	
Introduction to Communication Networks: Communication Switching: Circuit Switching, Message and Packet Switching, Connectionless and Connection oriented packet switching;	
Communication Process and Layered Architecture: Communication between computers and	[10]
layering concept, OSI Layers,	
Text Books:	004
[T1] J. G. Proakis and M. Salehi, "Fundamentals of Communication Systems," Prentice Hall, 2[T2] S. Haykin, "Communication Systems," John Wiley & Sons, 5th Ed., 2009.	004.
[T3] B.P. Lathi and Z. Ding, "Modern Digital and Analog Communication Systems," 4th Ed.	, Oxford
University Press, 2009.	
Reference Books: [R1] Louis E. Frenzel, "Principles of Electonic Communication Systems," 3rd Ed., Tata McGra	aw-Hill
2008.	
[R2] Dennis Roddy and John Coolen, "Electronic Communications," 4th Ed., Pearson, 2008.	
[R3] B. A Forouzan, "Data Communications and Networking," 4th Ed., McGraw Hill, 2012.	
[R4] D. Bertsekas and R. Gallager, "Data Networks," 2nd Ed., PHI learning, 2011.	

Approved by BoS of USAR 15/06/23, Applicable from Batch admitted in Academic Session 2022-23 Onwards

Approved by AC sub-committee 04/07/23 Onwards Page | 41

Paper o	ode: A	RA 212	2							I	L T/P	С
Subject	: Prod	uction [Fechno	logy						2	4 O	4
Marki	ng Sch	eme:									1	
Teache	rs Cont	inuous	Evaluat	ion: As p	per unive	ersity exa	mination	norms f	rom time	e to time		
End Te	rm The	ory Exa	aminatio	on: As pe	er univer	sity exan	ination 1	norms fro	om time	to time.		
INSTR	UCTI	ONS T	O PAPI	ER SET	FERS:		Ma	ximum I	Marks: A	As per u	niversit	y norms
\blacktriangleright	There s	hould be	e 9 quest	ions in th	e end teri	n examina	ation ques	stion pape	r.			
\blacktriangleright				-	-	cover the	-	llabus. Th	is questio	on should	have obj	ective or
		• -				of 15 mark		<u> </u>	•	.1 11		
A						paper shal ents may						
			_	e 15 mark		ents may	De askeu		i onry i q	uestion n	omeach	umt.
	•					view the l	earning o	outcomes	of course	/paper. Tl	ne standa	rd/ level
	-					ne level of	-					
\blacktriangleright	The req	uiremen	t of (scie	entific) ca	lculators	/log-table	s/ data-ta	bles may	be specif	ied if requ	uired.	
Course	e Outco	omes[Bl	loom's I	Knowled	lge Leve	el (KL)]:						
CO1	Abilit	y of stu	dents to	understa	and the b	asic know	wledge o	f machir	e tools.	[K1, K2]	
CO2		-		solve th ess. [K1	-	ms on me 3]	echanics	of metal	cutting o	operation	s with re	espect to
CO3		•			0	capability [K2, K3		cting suit	able mai	nufacturi	ng	
CO4		•	dents to es. [K1,		and the i	mportanc	e and ap	plication	of Grin	ding Ma	chinesan	d
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	2	2	2	2	3	2	-	-	1	-	2	3
CO2	3	3	3	3	3	3	-	-	1	-	2	3
CO3	3	3	3	3	3	2	-	-	1	-	2	3
CO4	3	2	2	2	3	2	-	-	1	-	2	3
Course	e Conte	ent										No of lectures
Feature	es of lat	he bed,	Head st	ock and	tail stock	ng, Types k, carriage ate, Angl	e saddle,	Cross sli	ide, Com	pound re	est, Tool	[10]

Approved by BoS of USAR 15/06/23, Applicable from Batch admitted in Academic Session 2022-23 Onwards

Lathe operations-plane, step turning, Taper turning, Screw cutting, Drilling, Boring, reaming, Knurling, Parting off.	
Unit II	
Theory of Metal Cutting: Mechanics of metal cutting- Orthogonal and oblique cutting, Chip formation, Types of chips, Chip control, Merchants theory of cutting forces at tool point, Limitations and modifications of Merchants theory, Plowing forces and the 'Size effect', Heat generation in metal cutting, Cutting fluids, Tool wear, Tool life and Machinability, Nomenclature of cutting tools.	[10]
Unit III	
Metal Casting: Types of Pattern, Pattern Allowances, Pattern Design, Recent Development InPattern Design, Types Of Sand, Properties of Moulding Sand, Riser design, Elements of Gating system. Gating system design. Welding:	[10]
Classification Of Welding Processes, Physics Of Arc, Arc Blow, Welding Symbol, Types Of V-I Characteristics, Different Types Of Power Sources, Classification And Selection Of Welding Electrodes, Welding Fluxes	
Unit IV	
Bulk Metal Forming: Classification of Rolling Processes, Rolling Mills, Products, Rolling Defects and Controls. Defects & Remedies. Drawing of Rods, Wires, Tubes, Variables in Drawing and Operations, Analysis of Drawing Forces. Defects & Remedies. Classification of Extrusion Processes, Equipment and Variables Used inExtrusion. Defects & Remedies. Sheet Metal Forming. Various sheet metal processes. Analysis of Deep Drawing Process.	[10]
Text Book:	
 [T1] Manufacturing Technology by P.N. Rao, Tata McGraw Hill Publications. [T2] Manufacturing Science by A Ghosh and A K Mallik, East West Press Ltd. [T3] Manufacturing Processes for Engineering Materials - Kalpakjian S and Steven R SchmidPearson F Edn Reference Book: [R1] Production Engineering Sciences by P.C. Pandey& C.K. Singh, Standard Publications. [R2] Fundamental of Manufacturing Processes by G K Lal & S K Choudhary. [R3] Fundamentals of Metal Cutting & Machine Tools by B. L. Juneja, G. S. Sekhon &Nitin Seth, Age International Publications. 	
	_

Approved by BoS of USAR 15/06/23, Applicable from Batch admitted in Academic Session 2022-23 Onwards

DETAILED SYLLABUS FOR 5th SEMESTER

Approved by BoS of USAR 15/06/23, Approved by AC sub-committee 04/07/23 Applicable from Batch admitted in Academic Session 2022-23 Onwards

Page | 44

Paper o	ode: A	RA 305	5								L	T/P	С
Subject	: Cobo	tics and	l Factor	y Auton	nation						4	0	4
Marki	ng Sch	eme:								I			-1
				-		•	xaminati						
End Te	rm The	eory Exa	aminatio	on: As pe	er unive	rsity exa	aminatio	n norms	from tim	e to time	е.		
INSTR	RUCTI	ONS T	O PAP	ER SET	TERS:		\mathbf{M}	laximun	n Marks	: As per	univ	ersity	y norms
A	There s	hould be	e 9 quest	ions in th	e end ter	m exam	ination qu	estion pa	per.				
\blacktriangleright				-	-		he entire	syllabus. '	This ques	tion shou	ld hav	ve obj	ective or
				ions. It sh									
A	-	-				· ·	hall consi		-	•			•
			-	e 15 mark		dents ma	iy be aske	a to atten	ipt only 1	question	irom	eacn	unit.
A	-					view th	e learning	outcome	es of cour	se/naner	The st	tanda	rd/level
	_						of the pre			se/paper.	The st	lanua	
\checkmark		•					bles/ data-			rified if re	equire	d.	
		•		Knowled		Ū.							
CO1	Identi	fy the C	Cobotics	concept	s and th	eir appl	ication in	n Manufa	cturing	[K1, K2]		
CO2	Devel	op cobo	otic prog	grams . [ŀ	K1, K2]								
CO3		nts will onments	-		lge and	skills ir	n task pla	nning an	d execut	ion in co	ollabo	rative	3
CO4	The co	ourse m	ay prov	ide insig	hts into	integra	ting cobo	otic syste	ms into i	ndustria	l appl	icatio	ons.[K4]
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO	11	PO12
CO1	3	3	3	3	3	-	-	-	1	3	1		2
CO2	3	2	3	3	2	-	I	-	2	3	2	r	2
CO3	3	3	3	2	2	-	-	-	2	2	2	·	3
CO4	3	3	3	2	3	-	-	-	3	3	2	,	3
Course	e Conte	ent											No of lectures

Approved by BoS of USAR 15/06/23, Applicable from Batch admitted in Academic Session 2022-23 Onwards

Unit I Collaborative Robots (Cobots) Introduction - Characteristics of Cobots - Cobots in Complex Environments - Working Alongside	[10]
Humans - Level of Automation and Collaboration	
- Conflicts and Trust - Guidelines for Designing a Cobot - Cobots in Industry Operations – Cobots	
as Workforce - Applications of Cobots.	
Unit II Cobots in manufacturing History and development of collaborative robots, comparison with conventional robots, Safety aspects of COBOTS during its interaction with humans ,Role of COBOTS in manufacturing processes and other areas of application.	[10]
Unit III AI & Cobot AI based Robot Architecture & Applications in Automated Manufacturing, Robot Vision & Motion, AI Search Algorithms For Robot Planning and Manipulation, Multi agent and swarm robotics, Robot to Robot and Robot to human coordination (Cobots - collaborative robotics) Reliable & Trusted AI in Robotics.	[10]
Unit IV Emerging trends and case studies Study of different types of industrial collaborative robots – case studies ,Programming, setup and flexible automation using COBOTS ,Operational aspects of COBOTS – hand guiding, power and force limiting, safety monitored stops, speed and separation monitoring, Emerging trends in development of COBOTS.	[10]
Text Books: [T1] Matthew Wilton, Essential Guide to Risk Assessment for Collaborative Robots (2018). [T2] Michal Gurgul, Industrial robots and COBOTS (2018).	
Reference Books: [R1] Peter Matthews, Steven Greenspan Automation and Collaborative Robotics: A Guide to th Future of Work. [R2] Cabatias by Termores Mandala	ne
[R2] Cobotics by Tanmayee Mandala.	

Approved by BoS of USAR 15/06/23, Applicable from Batch admitted in Academic Session 2022-23 Onwards

Paper c	ode: A	RA 307	7								L	T/P	С
Subject	: Robo	tic com	ponent	s design	and sir	nulation	l				4	0	4
Marki	0												
				-		•		on norms			e.		
End Te	rm The	ory Exa	aminatio	on: As pe	er unive	rsity exa	mination	norms fr	om time	to time.			
INSTR	UCTI	ONS TO	O PAPI	ER SET	FERS:		M	aximum	Marks:	As per u	iniv	ersity	norms
			-				-	estion pap					
>				_				yllabus. T	his questi	on should	l hav	ve obje	ctive or
			-	ons. It sh					•.	.1 11	1	Б	•.
	-							t of four u l to attemp	-	-		-	
			-	e 15 mark		ients may	oc asket	i to attemp	n only i q	[uestion]	10111	cacii u	
						view the	learning	outcomes	of course	/paper. T	'he st	tandard	l/ level
	-						-	scribed tex		I I I			
A	The req	uiremen	t of (scie	entific) ca	lculators	s/ log-tabl	les/ data-t	tables may	be specif	ied if req	uired	d.	
Course	e Outco	mes[Bl	oom's l	Knowled	lge Lev	el (KL)]	:						
CO1				comprehe nctionali			ding of 1	obotic sy	stems, in	cluding	the o	compo	nents
							los of m	echanical	design a	annlig	1 to 1	roboti	20
CO2	[K1,K			e princip	nes anu	teeninqt		Chamcar	design a	s applied	1 10 1		
CO3	Studer [K1,K		learn al	oout moti	ion plan	ning alg	orithms	and techn	iques use	ed in rob	otic	syster	ns.
CO4			-	o skills in ogies, and		•	•	g and con 4]	nmunicat	ing their	des	ign	
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	Р	011	PO12
CO1	3	3	3	2	3	2	1	-	1	3		1	2
CO2	3	3	3	2	3	1	1	-	2	3		1	2
CO3	3	2	3	3	3	1	1	-	3	3		2	3
CO4	3	2	3	3	2	3	2	-	3	3		2	3
Course	e Conte	ent											No of lectures

Approved by BoS of USAR 15/06/23,

Approved by AC sub-committee 04/07/23

Unit I Design of Simple Machine components under static load Introduction, Modes of failures, Factor of safety, Theories of failures, Selection of Factor of Safety, [10] Service factor, Design of joints - Cotter joint, Knuckle joint, Design of levers - lever for safety valve, bell crank lever, Design of components subjected to eccentric loading, Design of joints -Welded joints, Riveted joints. Unit II **Design against fluctuating loads** Stress concentration and its factors, Reduction of stress concentration factors, fluctuating stresses, [10] fatigue failures, endurance limit, S-N curve, Notch sensitivity, Endurance limit, Endurancestrength modifying factors, Reversed stresses – Design for Finite and Infinite life, Cumulative damage in fatigue failure, Soderberg, Gerber, Goodman Lines, Modified Goodman diagrams, Fatigue design under combined stresses. [10] **Unit III Design of Robot End Effectors** Introduction, Type of End-effectors, Considerations for Gripper selection and design, Design Mechanical grippers, Other types of grippers, Tools as an End effector, The robot and end effector interface, Physical support of the end effector. Unit IV **Design of Machine Tool and Bearings** Introduction to Machine Tool Gearboxes, classification, basic considerations in design of drives and its Applications, Determination of variable speed range. Sliding contact bearing: Introduction to sliding contact bearing, classification, Reynolds's [10] equation (2D). Rolling Contact Bearings: Types of rolling contact Bearings and its selection, Static and dynamic load carrying capacities. Text Books: [T1] Bhandari V.B, Design of Machine Elements, Tata McGraw Hill Publication Co. Ltd. [T2] Machine Design by Pandya and Shah, Charotar Publishing [T3] Shigley J.E. and Mischke C.R., Mechanical Engineering Design, McGraw Hill Publication Co. ltd **Reference Books:** [R1] Spotts M.F. and Shoup T.E., Design of Machine Elements, Prentice Hall International. [R2] P. Kannaiah, Design of Transmission systems, SCIETCH Publications Pvt Ltd.

Approved by BoS of USAR 15/06/23,

Approved by AC sub-committee 04/07/23 Applicable from Batch admitted in Academic Session 2022-23 Onwards Page | 48

Paper c	ode: Al	RA 309									L	T/P	С
Subject	: Advai	nced Ma	anufactu	iring Pro	cesses						4	0	4
Marki	ng Sche	eme:											<u>. </u>
Teache	rs Cont	inuous	Evaluat	ion: As p	per univ	ersity ex	aminatio	on norms	from tin	ne to tim	e.		
End Te	rm The	ory Exa	aminatio	on: As pe	er unive	rsity exa	mination	n norms f	rom time	e to time			
INSTR	UCTIO	ONS T	O PAPI	ER SET	TERS:		Μ	aximum	Marks:	As per	univ	ersity	norms
			-				_	estion pap					
\blacktriangleright				-	•			yllabus. T	his quest	ion shoul	d hav	e obje	ctive or
A		• -		ons. It sh				st of four	mita og n	or the out	labua	Evon	it
	-							to attem	-	-			
			-	e 15 mark		······	,		F J -	1			
\blacktriangleright	The que	estions a	re to be	framed ke	eeping in	view the	e learning	outcome	s of cours	e/paper. '	The s	tandar	d/ level
	-						-	scribed te					
			```	,		U		tables mag	y be spec	ified if re	quire	d.	
Course	Outco	mes[Bl	loom's l	Knowled	lge Lev	el (KL)]	:						
001	•					basic	knowled	lge and	methodol	ogy of va	rious		
CO1	manufacturing processes. [K1, K2] Ability of students to Compare and contrast the advantages and limitations of different manufacturing												
CO2	-		ents to C , K2, K3	-	and contr	ast the ac	dvantages	and limit	tations of	different	manu	factur	ing
CO3	•			elect mate chining t	-	•	echnique	with the a	im of cos	t reductio	on,red	lucing	
CO4				lentify th			ters affect	ting the p	roduct qu	ality in v	arious	sadvar	ced
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	Р	011	PO12
CO1	2	2	2	2	3	2	-	-	-	-		2	3
CO2	3	3	3	2	3	2	-	-	-	-		2	3
CO3	3	3	3	2	3	2	-	-	-	-		2	3
CO4	3	2	3	2	3	2	-	-	-	-		2	3
Course	e Conte	ent									•		No of lecture
								l of advar analysis					[10]

Approved by BoS of USAR 15/06/23,

-----

_____

Approved by AC sub-committee 04/07/23 Applicable from Batch admitted in Academic Session 2022-23 Onwards Page | 49

_____



applications of processes such as Ultrasonic machining (USM), Electro discharge machining (EDM).	
<b>Unit II</b> Introduction: Process principle, Material removal mechanism, Parametric analysis, process capabilities and applications of processes such as Abrasive jet machining (AJM), Water jet machining (WJM), Abrasive Water jet machining (AWJM), Laser beam machining, Electron beam machining (EBM), Ion beam machining (IBM). Electro-chemical machining (ECM).	[10]
<b>Unit III</b> Introduction: Process principle, Parametric analysis, process capabilities and applications of processes such as Friction stir welding (FSW), Electron beam welding (EBW), Laser beam welding, (LBW), Ultrasonic welding (USW).	[10]
<b>Unit IV</b> Introduction: Working principle, process performance, advantages and limitations and applications hybrid process such as EC grinding and chemical machining. Details of high energy rate forming (HERF) process, Electro-magnetic forming, explosive forming, Electro-hydraulic forming, Additive Manufacturing.	[10]
<ul> <li>Text Books:</li> <li>[T1] Advanced machining process, Dr. V. K. Jain</li> <li>[T2] Non-traditional methods of manufacturing, Shah &amp;Pandey</li> <li>Reference Books:</li> <li>[R1] Manufacturing Processes for Engineering Materials - Kalpakjian S and Steven R SchmidPearson 5 5th Edn.</li> <li>[R2] Parmer R.S., Welding Engineering and Technology, Khanna Publishers,2002, ISBN9788174090287</li> </ul>	Publ,

_____

Approved by BoS of USAR 15/06/23, App Applicable from Batch admitted in Academic Session 2022-23 Onwards

_____



Paper c	ode: A	RA 311	L								L	T/P	С
Subject	: Ther	mal Sci	ence								4	0	4
Marki	ng Scho	eme:											<u>.</u>
Teache	rs Cont	inuous	Evaluat	ion: As p	per univ	ersity e	xaminat	ion norm	s from tir	ne to time	e.		
End Te	rm The	ory Exa	minatio	on: As pe	er unive	rsity ex	aminatio	on norms	from time	e to time.			
INSTR	UCTI	ONS TO	O PAPI	ER SET	TERS:		Ν	Aaximun	n Marks:	As per u	inive	ersity	norms
A A A A	Questic short ar Apart fr should Each que of the que of the que <b>Outco</b> Abilit	on No. 1 aswer typ rom Que have two uestions a uestions a uestions uiremen <b>omes [B</b> y of stud	should to be question Noto o question hould be re to be to be as t of (scient loom's dents to	be compul ions. It sh o. 1, the re- ons. Howe e 15 mark framed ke ked shou entific) ca <b>Knowle</b> develop	lsory and ould be est of the ever, stud s. eeping ir ld be at t ilculator <b>dge Le</b>	d cover t of 15 ma paper s dents ma n view th the level s/ log-tal vel (KL derstand	he entire arks. hall cons by be ask he learnin of the pr bles/ data <b>)]:</b> ling of b	ist of four ed to atter ag outcome rescribed t a-tables ma asic conc	This quest units as p npt only 1 es of cours extbooks. ay be spec epts of T	ion should er the sylla question f se/paper. T ified if req hermal So	abus. From The st Juirec	Every each t andar 1.	y unit unit. rd/ level
CO2	Systen	ns. <b>[K2,</b>	K3, K4]							es various			
CO3		eters. []			iid uiidi	<i>J20</i> gus	powere	yeres and		ne the per	10111	lunee	
CO4				understa K <b>3, K4</b> ]	and the	basic co	oncepts o	of Refrige	eration an	d Air Coi	nditi	oning	, and
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	Р	011	PO12
CO1	3	2	2	2	2	1	-	-	-	-		2	3
CO2	3	3	3	3	2	1	-	-	-	-		2	3
CO3	3	3	3	3	2	1	-	-	-	-		2	3
CO4	3	3	3	3	2	1	-	-	-	-		2	3
Course	e Conte	ent			1					1	<u> </u>		No of lecture

_____

Approved by BoS of USAR 15/06/23, Applicable from Batch admitted in Academic Session 2022-23 Onwards

-----



Unit I	
Basic Concepts	
Macroscopic and Microscopic Approach, Concept of Continuum, Thermodynamic System, Surrounding and Boundary, Thermodynamic Equilibrium, State, Path, Process, Cycle, Quasi-static	
Process, Reversible and Irreversible Process, Working Substance. Thermodynamic Properties like	
Pressure, Volume and Temperature, Zeroth Law of Thermodynamics. Temperature Scales,	51.03
Concept of Heat and Work in Thermodynamics.	[10]
First Law of Thermodynamics	
Joule S Paddle Wheel Experiment; Mechanical Equivalent of Heat, First Law for A Closed System	
Undergoing a Cycle, First Law for a Closed System Undergoing a Change of State. Different Forms of Stored Energy, Enthalpy, Energy of An Isolated System, PPM 1.	
Unit II	
First Law Applied to Flow Processes	
Flow Process and Control Volume, Flow Work, Steady and Unsteady Flow Process, Steady Flow Energy Equation, Engineering Applications of Steady Flow Energy Equation, Throttling Process, Flow Work and Non Flow Work, Variable Flow Processes, Limitation of First Law.	
Second Law of Thermodynamics	
Qualitative Difference Between Heat And Work, Thermal Reservoir, Statements of 2 nd Law By	[10]
Max. Planck And Claussius, Equivalence Between Two Statements, Energy Analysis of Heat	
Engine, Refrigerator and Heat Pump Reversibility And Irreversibility, Causes of Irreversibility	
Carnot Theorem, Carnot Cycle, Absolute Thermodynamic Temperature, Scale, Efficiency of The	
Reversible Heat Engine, Equality of Ideal Gas Temperature and Kelvin Temperature.	
Unit III	
Entropy	
Classius Theorem, Classius Inequality and Concept of Entropy, Entropy Change in an Irreversible	[10]
Classius Theorem, Classius Inequality and Concept of Entropy, Entropy Change in an Irreversible Process, Application of Entropy Principle, Entropy Transfer with Heat Flow, Entropy Generation	[10]
Classius Theorem, Classius Inequality and Concept of Entropy, Entropy Change in an Irreversible Process, Application of Entropy Principle, Entropy Transfer with Heat Flow, Entropy Generation in Closed and OpenSystem, Thermodynamics Equations Relating Properties of System, Reversible	[10]
Classius Theorem, Classius Inequality and Concept of Entropy, Entropy Change in an Irreversible Process, Application of Entropy Principle, Entropy Transfer with Heat Flow, Entropy Generation in Closed and OpenSystem, Thermodynamics Equations Relating Properties of System, Reversible Adiabatic Work in A Steady Flow System. Entropy and Direction, Entropy and Disorder.	[10]
Classius Theorem, Classius Inequality and Concept of Entropy, Entropy Change in an Irreversible Process, Application of Entropy Principle, Entropy Transfer with Heat Flow, Entropy Generation in Closed and OpenSystem, Thermodynamics Equations Relating Properties of System, Reversible Adiabatic Work in A Steady Flow System. Entropy and Direction, Entropy and Disorder. <b>Gas Power Cycles</b>	[10]
Classius Theorem, Classius Inequality and Concept of Entropy, Entropy Change in an Irreversible Process, Application of Entropy Principle, Entropy Transfer with Heat Flow, Entropy Generation in Closed and OpenSystem, Thermodynamics Equations Relating Properties of System, Reversible Adiabatic Work in A Steady Flow System. Entropy and Direction, Entropy and Disorder. <b>Gas Power Cycles</b> Air Standard Efficiency, Mean Effective Pressure, Otto, Diesel, Dual, Brayton, Stirling and	[10]
Classius Theorem, Classius Inequality and Concept of Entropy, Entropy Change in an Irreversible Process, Application of Entropy Principle, Entropy Transfer with Heat Flow, Entropy Generation in Closed and OpenSystem, Thermodynamics Equations Relating Properties of System, Reversible Adiabatic Work in A Steady Flow System. Entropy and Direction, Entropy and Disorder. <b>Gas Power Cycles</b>	[10]
Classius Theorem, Classius Inequality and Concept of Entropy, Entropy Change in an Irreversible Process, Application of Entropy Principle, Entropy Transfer with Heat Flow, Entropy Generation in Closed and OpenSystem, Thermodynamics Equations Relating Properties of System, Reversible Adiabatic Work in A Steady Flow System. Entropy and Direction, Entropy and Disorder. <b>Gas Power Cycles</b> Air Standard Efficiency, Mean Effective Pressure, Otto, Diesel, Dual, Brayton, Stirling and Ericson Cycle, Comparison of Cycles. <b>Unit IV</b>	[10]
Classius Theorem, Classius Inequality and Concept of Entropy, Entropy Change in an Irreversible Process, Application of Entropy Principle, Entropy Transfer with Heat Flow, Entropy Generation in Closed and OpenSystem, Thermodynamics Equations Relating Properties of System, Reversible Adiabatic Work in A Steady Flow System. Entropy and Direction, Entropy and Disorder. <b>Gas Power Cycles</b> Air Standard Efficiency, Mean Effective Pressure, Otto, Diesel, Dual, Brayton, Stirling and Ericson Cycle, Comparison of Cycles. <b>Unit IV</b> <b>Refrigeration and Air Conditioning</b>	[10]
Classius Theorem, Classius Inequality and Concept of Entropy, Entropy Change in an Irreversible Process, Application of Entropy Principle, Entropy Transfer with Heat Flow, Entropy Generation in Closed and OpenSystem, Thermodynamics Equations Relating Properties of System, Reversible Adiabatic Work in A Steady Flow System. Entropy and Direction, Entropy and Disorder. <b>Gas Power Cycles</b> Air Standard Efficiency, Mean Effective Pressure, Otto, Diesel, Dual, Brayton, Stirling and Ericson Cycle, Comparison of Cycles. <b>Unit IV</b> <b>Refrigeration and Air Conditioning</b> Working of Simple Vapour Compression Cycle, Representation of Various Processes on pH	[10]
Classius Theorem, Classius Inequality and Concept of Entropy, Entropy Change in an Irreversible Process, Application of Entropy Principle, Entropy Transfer with Heat Flow, Entropy Generation in Closed and OpenSystem, Thermodynamics Equations Relating Properties of System, Reversible Adiabatic Work in A Steady Flow System. Entropy and Direction, Entropy and Disorder. <b>Gas Power Cycles</b> Air Standard Efficiency, Mean Effective Pressure, Otto, Diesel, Dual, Brayton, Stirling and Ericson Cycle, Comparison of Cycles. <b>Unit IV</b> <b>Refrigeration and Air Conditioning</b> Working of Simple Vapour Compression Cycle, Representation of Various Processes on pH Diagram, Air Conditioning Principle, Humidity, Relative Humidity, Representation of Various	
Classius Theorem, Classius Inequality and Concept of Entropy, Entropy Change in an Irreversible Process, Application of Entropy Principle, Entropy Transfer with Heat Flow, Entropy Generation in Closed and OpenSystem, Thermodynamics Equations Relating Properties of System, Reversible Adiabatic Work in A Steady Flow System. Entropy and Direction, Entropy and Disorder. <b>Gas Power Cycles</b> Air Standard Efficiency, Mean Effective Pressure, Otto, Diesel, Dual, Brayton, Stirling and Ericson Cycle, Comparison of Cycles. <b>Unit IV</b> <b>Refrigeration and Air Conditioning</b> Working of Simple Vapour Compression Cycle, Representation of Various Processes on pH Diagram, Air Conditioning Principle, Humidity, Relative Humidity, Representation of Various Air Conditioning Processes on Psychrometric Charts.	[10]
Classius Theorem, Classius Inequality and Concept of Entropy, Entropy Change in an Irreversible Process, Application of Entropy Principle, Entropy Transfer with Heat Flow, Entropy Generation in Closed and OpenSystem, Thermodynamics Equations Relating Properties of System, Reversible Adiabatic Work in A Steady Flow System. Entropy and Direction, Entropy and Disorder. <b>Gas Power Cycles</b> Air Standard Efficiency, Mean Effective Pressure, Otto, Diesel, Dual, Brayton, Stirling and Ericson Cycle, Comparison of Cycles. <b>Unit IV</b> <b>Refrigeration and Air Conditioning</b> Working of Simple Vapour Compression Cycle, Representation of Various Processes on pH Diagram, Air Conditioning Principle, Humidity, Relative Humidity, Representation of Various Air Conditioning Processes on Psychrometric Charts. <b>Heat Transfer</b>	
Classius Theorem, Classius Inequality and Concept of Entropy, Entropy Change in an Irreversible Process, Application of Entropy Principle, Entropy Transfer with Heat Flow, Entropy Generation in Closed and OpenSystem, Thermodynamics Equations Relating Properties of System, Reversible Adiabatic Work in A Steady Flow System. Entropy and Direction, Entropy and Disorder. <b>Gas Power Cycles</b> Air Standard Efficiency, Mean Effective Pressure, Otto, Diesel, Dual, Brayton, Stirling and Ericson Cycle, Comparison of Cycles. <b>Unit IV</b> <b>Refrigeration and Air Conditioning</b> Working of Simple Vapour Compression Cycle, Representation of Various Processes on pH Diagram, Air Conditioning Principle, Humidity, Relative Humidity, Representation of Various Air Conditioning Processes on Psychrometric Charts. <b>Heat Transfer</b> Introduction to Different Modes, Principles of Conduction Convection and Radiation and Basic	
Classius Theorem, Classius Inequality and Concept of Entropy, Entropy Change in an Irreversible Process, Application of Entropy Principle, Entropy Transfer with Heat Flow, Entropy Generation in Closed and OpenSystem, Thermodynamics Equations Relating Properties of System, Reversible Adiabatic Work in A Steady Flow System. Entropy and Direction, Entropy and Disorder. <b>Gas Power Cycles</b> Air Standard Efficiency, Mean Effective Pressure, Otto, Diesel, Dual, Brayton, Stirling and Ericson Cycle, Comparison of Cycles. <b>Unit IV</b> <b>Refrigeration and Air Conditioning</b> Working of Simple Vapour Compression Cycle, Representation of Various Processes on pH Diagram, Air Conditioning Principle, Humidity, Relative Humidity, Representation of Various Air Conditioning Processes on Psychrometric Charts. <b>Heat Transfer</b> Introduction to Different Modes, Principles of Conduction Convection and Radiation and Basic Laws	
Classius Theorem, Classius Inequality and Concept of Entropy, Entropy Change in an Irreversible Process, Application of Entropy Principle, Entropy Transfer with Heat Flow, Entropy Generation in Closed and OpenSystem, Thermodynamics Equations Relating Properties of System, Reversible Adiabatic Work in A Steady Flow System. Entropy and Direction, Entropy and Disorder. <b>Gas Power Cycles</b> Air Standard Efficiency, Mean Effective Pressure, Otto, Diesel, Dual, Brayton, Stirling and Ericson Cycle, Comparison of Cycles. <b>Unit IV</b> <b>Refrigeration and Air Conditioning</b> Working of Simple Vapour Compression Cycle, Representation of Various Processes on pH Diagram, Air Conditioning Principle, Humidity, Relative Humidity, Representation of Various Air Conditioning Processes on Psychrometric Charts. <b>Heat Transfer</b> Introduction to Different Modes, Principles of Conduction Convection and Radiation and Basic	

Approved by BoS of USAR 15/06/23, Applicable from Batch admitted in Academic Session 2022-23 Onwards

_____

Approved by AC sub-committee 04/07/23



[T2] Engineering Thermodynamics, R. K. Rajput, Laxmi Publication

[T3] Engineering Thermodynamics, Moran and Shapiro, Wiley Publication

**Reference Books:** 

[R1] Thermodynamics: An Engineering Approach, Yunus A. Cengel, Michael A. Boles, Mc-Graw-Hill Education

[R2] Engineering Thermodynamics, P. K. Nag, Tata McGraw-Hill Education

[R3] Engineering Thermodynamics, Gordon Rogers & Yon Machew

Approved by BoS of USAR 15/06/23, Approved by AC sub-committee 04/07/23

Applicable from Batch admitted in Academic Session 2022-23 Onwards



Paper c	ode: A	RA 313								L	T/P	С
Subject	: MEM	IS: Intr	oductio	on and a	Applicati	ons				4	-	4
	s Conti	nuous E		-		•		orms from rms from t				
INSTRU	UCTIO	NS TO	PAPE	R SET	TERS:			Maximu	m Marks	: As per u	iniversity	y norms
> ( > A s H > 7 c > 7	Questio or short Apart fr should h Each qu The que of the que of the requ <b>Outcor</b> Abilit <b>K4]</b>	n No. 1 answer rom Que nave two estions a uestions a uiremer <b>nes: [B</b> y of stu	should type question N o question should b are to be at of (sc loom's dents to udents to	be com lestions lo. 1, the ons. Ho be 15 ma e framed sked sh ientific) <b>Knowle</b> o descrift	pulsory a . It should e rest of the owever, st arks. I keeping ould be a calculate edge Leve be MEMS	nd cover a d be of 15 he paper s udents ma in view th t the level ors/ log-ta el (KL)]: S and expl tterials us	the entire marks. shall cons ay be aske he learnin l of the pr bles/ data lain the m	uestion pa syllabus. 7 ist of four ed to attem g outcome escribed to t-tables ma icro-physi EMS. [ <b>K1</b> , icro sensor	This quest units as p pt only 1 as of cours extbooks. by be speci- cs involve <b>K2</b> ]	er the syll question f e/paper. T fied if rec	abus. Eve rom each he standa juired 1S. [K1, 1	ery unit unit. ard/ level <b>K2, K3,</b>
CO4:	Abilit	-	dents to	K2, K3		hods of a	nalyzing t	he MEMS	, and to di	iscuss ME	MS appli	ications.
CO/PO		<b>I</b>		PO04	PO05	<b>PO06</b>	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	2	2	3	2	-	-	-	3	1	2	3
CO2	3	2	3	3	2	-	-	-	3	1	2	3
CO3	3	3	3	3	3	-	-	-	3	1	3	3
CO4	3	3	3	3	2	-	-	-	3	1	3	3
Course	Conter	nt										No of Lect.
Unit I												[10]

Approved by BoS of USAR 15/06/23,

-----

Approved by AC sub-committee 04/07/23

Applicable from Batch admitted in Academic Session 2022-23 Onwards



Introduction: Overview of MEMS & Microsystems: Miniaturization & Microsystems. Micro sensors and	
Micro actuators. Microfabrication: Ultra-precision engineering, microelectronic fabrication, micro	
machining. Modelling and simulation of MEMS.	
Micro-Physics: Microforces, Adhesion and Surface Energy, Micro Scale Contact Mechanics, Micro-	
tribology.	
<b>Unit II</b> <b>MEMS materials:</b> Overview of Smart Materials, Structures and Products Technologies. Smart Materials (Physical Properties). Piezoelectric Materials, Electro-strictive Materials, Magneto-strictive Materials, Magneto electric Materials, Magneto rheological Fluids Electro Rheological Fluids, Shape Memory Materials, Bio-Materials, metal matrix composites (MMC), their applications in aerospace and automobiles, Super-plastic materials. <b>Polymer MEMS:</b> Polymers in MEMS– Polimide - SU-8 - Liquid Crystal Polymer (LCP) – PDMS – DMMA Developed Electrone	
PMMA – Parylene– Fluorocarbon	[12]
<ul> <li>Unit III</li> <li>Micro Sensors: Position Sensors: Capacitive Sensors, Linear Variable Differential Transformer, Interferometric Sensors, STM Tips based, etc. Force and Pressure Sensors: Strain Gauges, Deflection Based: AFM, etc., Visual Force Sensing: Bending Imaging, etc., Capacitive Force/Tactile Sensors. Accelerometers, Gyroscopes, Chemical Sensors, Flow Sensors, etc.</li> <li>Micro actuators: Piezoelectric Actuators: Bending Type- Unimorph and Bimorphs, Stack Type-Piezotubes, Thin-Film Type: ZnO, etc. films, Surface Acoustic Waves, PZT actuators as also integrated sensors. Electrostatic, Thermal, Ultrasonic, Electro/Magnetostrictive, and Shape Memory Alloy Based Actuators. Polymer Actuators, Dielectric Elastomers, Carbon Nanotube (CNT) Actuators. Biomolecular Motors.</li> </ul>	
<ul> <li>Unit IV</li> <li>MEMS Analyser: Optical Microscopy, Scanning Electron Microscopy (SEM) &amp; Tunneling Electron Microscopy (TEM). Scanning Probe Microscopy (SPM)- Scanning Tunneling Microscope (STM), Atomic Force Microscope (AFM). High-speed-imaging. Laser Doppler Vibrometer (LDV).</li> <li>Applications of MEMS: MEMS gyroscope, Mechanical MEMS, Magnetic MEMS, RF MEMS, MEMS thermo vessels, Bio and Chemo devices, MEMS packaging &amp; design considerations, Micro instrumentation. Micro-Opto-Electromechanical Systems. Micro fluidic systems and lab-on-a-chip devices. Micro-robotics: Biologically inspired robots, Applications of biomedical microrobots</li> </ul>	
<ul> <li>Text Books:</li> <li>[T1] Chang Liu, "Foundations of MEMS", Pearson Education Inc., 2006.</li> <li>[T2] Stephen D Senturia, "Microsystem Design", Springer Publication, 2000.</li> <li>[T3] Tai Ran Hsu, "MEMS &amp; Micro systems Design and Manufacture" Tata McGraw Hill, Ne 2002.</li> </ul>	w Delhi,
Reference Books: [R1] James J.Allen, "Micro Electro Mechanical System Design", CRC Press Publisher, 2010	

Approved by BoS of USAR 15/06/23,Approved by AC sub-committee 04/07/23Applicable from Batch admitted in Academic Session 2022-23 OnwardsPage | 55

____



[R2] Julian w. Gardner, Vijay K. Varadan, Osama O. Awadelkarim, "Micro Sensors MEMS and SmartDevices", John Wiley & Son LTD,2002 [R3] Mohamed Gad-el-Hak, editor, "The MEMS Handbook", CRC press Baco Raton, 2000.

Approved by BoS of USAR 15/06/23, Approved by AC sub-committee 04/07/23 Applicable from Batch admitted in Academic Session 2022-23 Onwards

Page | 56



Paper c	ode: A	RA 315	5							L	T/P	С
Subject	: Indus	strial D	esign a	nd App	lied Erg	onomics				4	-	4
	s Conti	nuous E		-	-	ersity exan sity exami						
INSTRU	UCTIC	ONS TO	) PAPE	R SET	TERS:			Maxim	ım Mark	s: As per	universit	y norms
> ( > A s H > 7 c > 7	Questio or short Apart fr hould l Each que of the que of the que of the req <b>Outcon</b> Abi Abilit Abilit	n No. 1 answer rom Qua have two lestions a uestions a uiremer <b>mes: [B</b> bility of ity of stu ry of stu	should type question N o questi should b are to be s to be a nt of (sc loom's students udents to idents to	be com destions lo. 1, th ions. Ho be 15 m e framed asked sh ientific) <b>Knowl</b> ts to exp to under b know	pulsory a . It shoul e rest of owever, s arks. I keeping ould be a o calculat edge Lev plain the wo rstand im about the	Id be of 15 the paper s atudents m g in view th at the level cors/ log-ta vel (KL)]: general pro- orking envel aportance of e environn o thermod	the entire marks. shall const ay be aske he learning l of the pro- bles/ data cinciples the ironment. of worker nental con	syllabus. ist of four ed to atter g outcom escribed t -tables m hat gover [K1, K2, performa ditions in	This ques tunits as p npt only 1 es of cour extbooks ay be spece ns the inte <b>K3</b> ] nce and s the indus	stion shoul per the syll question rse/paper. 7 cified if re- eraction of afety. [ <b>K1</b> , 1 stry. [ <b>K1</b> , 1 nd to unde	labus. Eve from each The standa quired humans i , <b>K2, K3</b> <b>K2</b> ]	n their
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	2	2	3	2	-	-	-	3	1	2	3
CO2	3	2	3	3	2	-	-	-	3	1	2	3
CO3	3	3	3	3	3	-	-	-	3	1	3	3
CO4	3	3	3	3	2	-	-	-	3	1	3	3
Course	Conter	nt	1	1		I	1	1				No of Lect.
	manua			U	•	1		Ū.		human–m ual design		[10]

Approved by AC sub-committee 04/07/23

Approved by BoS of USAR 15/06/23, Applicable from Batch admitted in Academic Session 2022-23 Onwards



development, detailed design and development. INFORMATION INPUT: Input and processing, text, graphics, symbols, codes, visual display of dynamic information, auditory, tactual, olfactory displays, speech communications.	
Unit II	
<b>Human output and control:</b> Physical work, manual material handling, motor skill, human control of systems, controls and data entry devices, hand tools and devices.	
Workplace design: Applied anthropometry, workspace design and seating, arrangement of components	
within a physical space, interpersonal aspects of work place design, design of repetitive task, design of manual handling task, work capacity, stress, and fatigue.	[10]
Unit III	
Environmental conditions: Illumination, climate, noise, motion, sound, vibration, colour and aesthetic concepts.	
BIOMECHANICS: Biostatic mechanics, statics of rigid bodies, biodynamic mechanics, human body	
kinematics, kinetics, impact and collision.	[10]
Unit IV	
Biothermodynamics and bioenergetics: Biothermal fundamentals, human operator heat transfer, human	
system bioenergetics, thermoregulatory physiology, human operator thermo regularity, passive operator, active operator,	
heat stress.	
Human factors applications: Human error, accidents, human factors and the automobile, organizational and social aspects, steps according to ISO/DIS6385, OSHA"s approach, virtual environments.	[10]
Text Books:	
[T1] Chandler Allen Phillips, "Human Factors Engineering", John Wiley and Sons, New York, 2000. [T2] Mark S Sanders, "Human Factors in Engineering and Design", McGraw Hill, New York, 1993.	
Reference Books:	
[R1] Bridger R S, "Introduction to Ergonomics", Taylor and Francis, London, 2003.	
[R2] Mayall W H, "Indus trial Design for Engineers", London ILIFFEE Books Ltd., UK, 1998.	

_____

Approved by BoS of USAR 15/06/23, Applicable from Batch admitted in Academic Session 2022-23 Onwards

_____



Paper (	Code: A	ARI 317	7									L	T/P	С
Subject	: Intro	ductior	ı to Sen	nicondu	ctor De	vices						4	-	4
Marki	ng Scho	eme:												<b></b>
				ion: As p		•								
		-		on: As pe		rsity ex								
				ER SET							As pe	er univ	ersity	norms
			-	ions in th				•	• •			1 1 1		. <b>.</b>
	-			e compul ons. It sh	•			syllabi	us. Thi	s quest	ion sho	ould hav	e obje	ctive or
		• •		1, the re				sist of f	our uni	ts as p	er the s	yllabus	. Every	v unit
	-			ons. Howe						-		-	-	
	-			e 15 mark										
$\blacktriangleright$	-			framed ke	1 0			0			e/paper	r. The s	tandar	d/level
	-			ked shou entific) ca							ified if	require	d	
				Knowle		-			, may c	e spee	incu ii	require	u.	
Course		-			0					6.0	• 1		FT7 1 T	70 1701
CO1	Students will understand and apply various Equilibrium aspects of Semiconductors. [K1, K											(2, K3]		
CO2	Abilit	y of stu	dents to	understa	and the c	carrier t	ransport	pheno	menoi	n in se	micono	ductors	. [K1,	K2, K3
CO3				ious ser t. [K3, K		ictor-ba	sed sw	itching	and	optoe	lectroi	nic de	vices	used ir
CO4	Under	stand th	ne work	ing of ba	usic to a	dvance	d semico	onduct	or mer	nories	. [K3,	K4].		
CO/PO	PO01	PO02	PO03	PO04	PO05	<b>O</b> 06	PO07	PO08	PO09	PO10	PO11	PO12	POS1	POS2
CO1	3	3	2	3	1	-	-	-	-	1	-	3		
CO2	3	3	2	3	1	-	-	-	-	1	-	3	3	3
CO3	3	3	2	3	2	-	-	-	-	1	-	3	3	3
<b>CO4</b>	3	3	3	3	2	-	-	-	-	1	-	3	3	3
Course	e Conte	ent												No of lectures
devices	bands and te	chnolog	gy, Eler	ncentra nental a and Impu	nd com	pound	semicon	ductor	s, Bas	ic cry	stal st	ructure	s and	

Approved by AC sub-committee 04/07/23



Energy Bands in Metals, Semiconductors and Insulators, Intrinsic and Extrinsic Semiconductors, Intrinsic Carrier Concentration and Fermi-Dirac Distribution, Boltzmann Approximation, Fermi Energy at Low Temperatures, Donors and acceptors, Degenerate and Non-degenerate semiconductor, III-V Semiconductors, Direct and indirect bandgap semiconductors.	
UNIT II	
Carrier Transport Phenomena: Mobility, Resistivity, The Hall effect, Diffusion process,	
Current density equation, Direct recombination, Quasi-fermi level, Indirect recombination,	
Surface recombination, Shockley-read- Hall recombination, Auger Recombination, Steady-state	
injection from one side, Minority carriers at the surface, Thermionic emission process, Tunnelling	[10]
process, Space-Charge Effect, High-field effects, Energy bands under electric fields, Effect of	
temperature in Semiconductors.	
Unit III	
Semiconductor Devices: p-n junction band diagram, Space Charge, Abrupt Junction, Linearly	
Graded Junction, Depletion Capacitance, Diffusion Capacitance, Junction Breakdown, Current-	[10]
Voltage Characteristics, Qualitative analysis of Bipolar Junction Transistor, Nonideal Effects in	[10]
BJT, Ideal MOS Capacitor, Si-SiO2 MOS Capacitor, Carrier Transport in MOS Capacitors,	
Charge-Coupled Devices, MOSFET characteristics types and threshold voltage control,	
Qualitative study of Advanced MOSFET and related Devices: MOSFET Scaling, Silicon-on-	
Insulator, Three dimensional FinFETs, Gate All Around FET, Carbon nanotube FET.	
<b>Optoelectronic devices:</b> Radiative Transitions and Optical Absorption, LEDs structures and	
characteristics, LEDs and their luminescent efficiency, Various Types of LEDs, Basic	
Semiconductor Laser, Basics of Photodetectors, Optical absorption, Pin photodetectors, p-n	
junction solar cells, diode laser	
Unit IV	
Semiconductor Memories: Types of memories, RAM array organization, DRAM- Types,	
Operation, Leakage currents in DRAM cell and refresh operation, SRAM operation Leakage	
currents in SRAM cells, Non-volatile memory- Floating-Gate Devices, Flash Memory- NOR flash	[10]
and NAND flash, Charge-trapping Devices, Advance Memory designs and working principles:	
Resistive random-access memory (RRAM), Phase-change memory (PCM), Magneto-resistive	
random-access memory (MRAM).	
Text Books:	
[T1] S. M. Sze and M. K. Lee, (2016) Semiconductor Devices Physics and Technology, John W	Viley &
Sons, INC., 3rd edition.	
[T2] Donald A. Neamen, (2012) Semiconductor Physics and Devices Basic Principles. McGra Higher, 4th edition.	aw-Hill
Reference Books:	
[R1] Mykhaylo Evstigneev, (2022). Introduction to Semiconductor Physics and devices, Spring edition.	ger, 1st
[R2] Shimeng Yu, (2022) Semiconductor Memory Devices and circuits, CRC Press Tayor &	Francis
Group, 1st edition.	

_____

Approved by BoS of USAR 15/06/23,

_____

Approved by AC sub-committee 04/07/23 Applicable from Batch admitted in Academic Session 2022-23 Onwards Page | 60

_____



Paper o	code: A	RA 319	)								L	Р	Credit
Subject	t: Auto	matic C	Control	Systems							4	0	4
Marki	ng Sch	eme:									11		
Teachers Continuous Evaluation: As per university examination norms from time to time.													
End Term Theory Examination: As per university examination norms from time to time.													
INSTR	NSTRUCTIONS TO PAPER SETTERS: Maximum Marks: As per univers												' norms
A	Question No. 1 should be compulsory and cover the entire syllabus. This question should have object											ective or	
~	short answer type questions. It should be of 15 marks.												
_	Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, students may be asked to attempt only 1 question from each unit												
	should have two questions. However, students may be asked to attempt only 1 question from each unit. Each question should be 15 marks.												
≻	The que	estions a	re to be	framed ke	eping ir	n view th	e learnir	ig outco	mes of c	ourse/pape	er. The st	anda	rd/ level
	-	•		ked shou			-						
	-	-				-		a-tables	may be s	pecified if	required	1	
Course	Course Outcomes[Bloom's Knowledge Level (KL)]:												
	Identify type of the system, apply block reduction technique and Mason's Gain formula to obtain												
	the transfer function of the given system, and formulate differential equation to represent the model of a mechanical system into equivalent electrical system and solve using Laplace												
CO1		orm <b>[K</b> ]		al system	1 into eo	Juivaler	it electri	cal syst	em and	solve usi	ng Lapi	ace	
CO2		•		ate the s n for diff				-	-	performar	nce in ti	ne d	omain
CO3			•	the stab d the co	• •	• 1			Bode Plo	ot. For a g	given un	stabl	le
	-		-		, state v	ariables	and sta	te mode	el. Quali	tative stu	dy of Jo	int a	nd task
CO4	space	control	[K3,K4	<b>I</b> ].								-	
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11		PO12
CO1	3	3	2	3	2	-	-	-	1	1	-		2
CO2	2	3	3	2	2	-	-	-	1	1	-		2
CO3	3	2	3	3	-	-	-	-	1	1	-		3
CO4	3	3	3	3	-	-	-	-	1	1	-		3
Course	e Conte	ent										No es	of lectur

_____

Approved by BoS of USAR 15/06/23,

-----

Approved by AC sub-committee 04/07/23

Applicable from Batch admitted in Academic Session 2022-23 Onwards



<b>INTRODUCTION</b> : Open loop and closed loop systems - Examples - Elements of closed loop systems - Transfer function - Modeling of physical systems – Mechanical, Thermal, Hydraulic systems and Electric Networks - Transfer function of DC generator, DC servomotor, AC servomotor, Potentiometer, Synchros, Tacho- generator, Stepper motor - Block diagram - reduction techniques, Signal flow graph – Mason" gain formula.	[10]
Unit II TIME DOMAIN ANALYSIS: Standard Test signals – Time response of second order system - Time domain specifications - Types of systems - Steady state error constants - Introduction to P, PI and PID modes of feedback control. FREQUENCY DOMAIN ANALYSIS: Frequency domain specifications - Time and frequency response correlation – Polar plot – Bode plot – All pass minimum phase and non-minimum phase systems.	[10]
<b>Unit III</b> <b>SYSTEM STABILITY:</b> Characteristic equation - Routh Hurwitz criterion of stability - Absolute and Relative stability - Nyquist stability - Nyquist stability criterion - Assessment of relative stability - Gain and Phase Margin. <b>ROOT LOCUS METHOD</b> : Root locus concepts - Construction of root loci – Root contours.	[8]
<b>Unit IV</b> <b>STATE SPACE ANALYSIS</b> : Limitations of conventional control theory - Concepts of state, state variables and state model – state model for linear time invariant systems - Introduction to state space representation using physical - Phase and canonical variables. Cascade and parallel form. <b>Joint and task space control:</b> Qualitative study of position control, velocity control, trajectory control, force control, proportional derivative control with gravity compensation, computed torque control, sliding mode control, and adaptive control.	[12]
Text Books: [T1]. Nagrath I J, and Gopal, M, 'Control Systems Engineering" Prentice Hall of India, New Delhi, 2008 [T2]. Richard C Dorf and Robert H Bishop, "Modern Control Systems.", Addison-Wesley -2007	}.
<ul> <li>Reference Books:</li> <li>[R1] Ogata K, "Modern Control Engineering", Pearson Education, New Delhi, 2006.</li> <li>[R2] Kuo B C, "Automatic Control Systems", Prentice-Hall of India Pvt. Ltd, New Delhi, 2004.</li> <li>[R3] Norman C. Nise S, "Control system Engineering", John Wiley &amp; Sons, Singapore, 2004.</li> </ul>	

Approved by BoS of USAR 15/06/23, Applicable from Batch admitted in Academic Session 2022-23 Onwards

-----

_____

Approved by AC sub-committee 04/07/23 Drivards Page | 62

_____



Paper Co	de: 321										L	T/P	С
Subject: Sw	vitching The	ory and	l Logic	Design							4		4
Marking													
Teachers Continuous Evaluation: As per university examination norms from time to time.													
End Term Theory Examination: As per university examination norms from time to time.													
INSTRU	NSTRUCTIONS TO PAPER SETTERS:       Maximum Marks: As per university norms         ➤ There should be 9 questions in the end term examination question paper												rms
		-					-	-	•				
	uestion No. 1							yllabus.	This qu	lestion sho	uld have	objecti	ve or
	ort answer ty	· ·							•,	.1	11.1		•,
	part from Qu ould have tw											-	
	ach question	•			student	s may t	ie askeu		inpt oni	y i questio	ii iioiii ea		•
	ne questions				ig in vie	w the l	earning	outcom	es of co	ourse/paper	. The stan	ndard/1	evel
	the question												
≻ Tł	ne requireme	nt of (sc	cientific	) calcula	ators/ lo	g-table	s/ data-t	ables m	ay be sp	pecified if 1	required		
Cours	e Outcomes:												
	Realize dif	ferent ty	vpes of r	number	systems	and nu	mber ba	ase con	versions	and repres	sentation of	ofBCD	,
CO1:	numbers –												
	Utilize the	nostulat	es of the	- Boole	an Alge	hra to n	ninimize	e the Co	mhinati	onal circui	ts and im	nlemen	tation
CO2:	of logic gat											premen	tation
~~~	Students w	ill be ab	le to An	alvze a	nd Desig	gn the S	leauenti	al Logi	c Circui	ts with thei	r applicat	ionsan	d the
CO3:	concept of												
CO4:	Students w			Implem	ent the	Design	proced	lure of	Synchro	onous & A	Asynchror	nous	
	Sequential	Circuits	5										
СО-РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2
CO1	3	1	2	3	3	0	0	0	0	2	0		3
CO2	3	3	2	3	3	0	0	0	0	2	0		3
CO3	3	3	2	3	3	0	0	0	0	2	0		3
CO4	3	3	3	3	3	0	0	0	0	2	0		3
Course C	Content											No lectur	of es

_____

Approved by BoS of USAR 15/06/23,

-----

Approved by AC sub-committee 04/07/23

Applicable from Batch admitted in Academic Session 2022-23 Onwards



UNIT I	[10]
<b>Number systems</b> – Decimal, Binary, Octal and Hexadecimal – conversion from one system to another – representation of negative numbers – representation of BCD numbers – character representation – character coding schemes – ASCII – EBCDIC etc. Addition, subtraction, multiplication and division of binary numbers. Addition and subtraction of BCD, Octal and Hexadecimal numbers	
UNIT II	[10]
Introduction — Postulates of Boolean algebra – Canonical and Standard Forms — logic functions and logicgates, methods of minimization of logic functions — Karnaugh map method and QuinMcClusky method Product-of-Sums Simplification — Don't-Care	
Conditions	
<b>Combinational Logic</b> : Combinational Circuits: Analysis Procedure, Design procedure, Binary adder- subtractor, Decimal adder, Binary multiplier, Magnitude comparator, Multiplexers, Demultiplexers, Decoders, Encoders.	
 UNIT III	[10]
<ul> <li>Sequential Logic and Its Applications: Storage elements: latches &amp; flip flops, Characteristic Equations of Flip Flops, Flip Flop Conversion, Shift Registers, Ripple Counters, Synchronous Counters, Other Counters: Johnson &amp; Ring Counter.</li> <li>Memory &amp; Programmable Logic Devices: Digital Logic Families: TTL, CMOS Logic families, Fan Out, Fan in, Noise Margin; RAM, ROM, PLA, PAL.</li> </ul>	[10]
UNIT IV	[10]
<b>Synchronous &amp; Asynchronous Sequential Circuits</b> : Analysis of clocked sequential circuits with state machine designing, State reduction and assignments, Design procedure. Analysis procedure of Asynchronoussequential circuits, circuit with latches, design procedure, Reduction of state and flow table, Race-free state assignment, Hazards.	[10]
 Text Books:	
<ul> <li>[T1] Mano M. M., Digital Logic &amp; Computer Design, 4/e, Pearson Education, 2013</li> <li>[T2] Floyd T. L., Digital Fundamentals, 10/e, Pearson Education, 2009.</li> <li>[T3] M. Morris Mano, Computer System Architecture, 3/e, Pearson Education, 2007.</li> <li>[T4] Harris D. M. and, S. L. Harris, Digital Design and Computer Architecture, 2/e, MorganKaufmann Publishers, 2013</li> </ul>	
References:	

_____

Approved by BoS of USAR 15/06/23,

-----

Approved by AC sub-committee 04/07/23 Applicable from Batch admitted in Academic Session 2022-23 Onwards Page | 64

_____



# **DETAILED SYLLABUS** FOR 6th SEMESTER

Approved by BoS of USAR 15/06/23, Approved by AC sub-committee 04/07/23 Applicable from Batch admitted in Academic Session 2022-23 Onwards

Page | 65



Paper o	ode: A	RA 304	ł							L	T/P	С
Subject	: Auto	motive	Techno	ology and	d Green '	Vehicle	s			4	0	4
Marki	ng Sch	eme:										
Teachers Continuous Evaluation: As per university examination norms from time to time.												
End Term Theory Examination: As per university examination norms from time to time.												
	INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: As per university :											
A	Question 1 (or 1 should be companyed) and cover and entire synapsis. This question should have object											ctive or
$\blacktriangleright$	short answer type questions. It should be of 15 marks.											unit
-	Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, students may be asked to attempt only 1 question from each unit.											
			-	e 15 mark		·		1				
A									of course/p	paper. The	e standar	d/ level
							f the presc					
> The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required.												
Course Outcomes [Bloom's Knowledge Level (KL)]:												
CO1	Ability of students to evaluate the power requirement of a vehicle under different operatingcondition											ons,
cor	[K2, K3, K4]											
CO2	Ability	of stud	ents to u	nderstand	the vario	us comp	onents of a	automobi	le transmis	ssion syst	em. <b>[K2,</b>	K3]
CO3	Abilit	y of stu	dents to	understa	and the va	arious co	omponent	ts of auto	mobile c	ontrol sy	stem. [ <b>k</b>	K1, K2]
CO4	Abilit	y of stu	dents to	understa	and the ba	asic con	ponents	of the gro	een vehic	les. <b>[K1,</b>	K2]	
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	3	2	3	2	2	-	-	-	3	3
CO2	3	3	3	2	3	2	1	-	-	-	3	3
CO3	3	3	3	2	3	2	1	-	-	-	3	3
CO4	2	2	2	2	3	3	3	-	-	-	3	3
												No of lectures
Unit I Introdu Conver			vehicle,	vehicle	classific	ation, f	rame and	l framele	ess constr	ruction,	vehicle	[10]

_____

Approved by BoS of USAR 15/06/23,

-----

Approved by AC sub-committee 04/07/23 Applicable from Batch admitted in Academic Session 2022-23 Onwards Page | 66



dimensions, power requirements, vehicle performance, gear ratio for maximum acceleration, stability of vehicles.								
<b>Power Source:</b> IC Engine (diesel, petrol and CNG), Electric Power source, Hybrid engine, Solar powered engine								
Emission control devices: Catalytic convertor and its types, EGR.								
<ul> <li>Unit II</li> <li>Clutch: Clutch Fundamentals, Different type of clutches, Torque transmitted through clutch, Energy lost during engagement, Energy dissipated due to clutch slippage.</li> <li>Transmission: Requirements for manual and automatic transmission, their type and constructional detail.</li> <li>Steering and Suspension: Steering mechanisms and steering system including power steering, turning radius calculation, Steering gear ratio, Forward and reverse efficiency of steering gear, Inertia torque effecting steering, suspension principle, rigid axle suspension and independent suspension, Mechanics of an independent suspension system.</li> </ul>	[10]							
<ul> <li>Unit III</li> <li>Drive Line: Introduction to driveline components, Critical speed of Propeller shaft, speed variations of Hooke Joint, differential gear ratio.</li> <li>Braking System: Introduction to braking system and their types, stopping distance, Work done in braking and braking efficiency, ABS.</li> <li>Wheel and Tyres: Disc pressed wheels, static and dynamic balancing of wheels, types and manufacturing, tubed and tubeless tyres, radial tyres, tyre specifications and coding.</li> <li>Vehicle Electronics: Electrical and electronic systems in automobiles, starting motor drives, Automotive accessories and safety features in automobile.</li> </ul>	[10]							
<b>Unit IV</b> <b>Electric Vehicle:</b> Introduction, Types of Electric Vehicle and Components, Types of Motors, Selection and sizing of Motor, RPM and Torque calculation of motor, Motor Controllers and mechanical connections, Cell Types (Lead Acid/Li/NiMH), Battery charging and discharging calculation.	[10]							
<ul> <li>Text Books:</li> <li>[T1] Giri, N. K., Automobile Mechanics, Khanna Publishers, New Delhi (2011).</li> <li>[T2] Hiller, V. A. W., Fundamentals of Motor Vehicle Technology, Nelson Thornes, UK (2012)</li> <li>[T3] Garrett, T. K., Newton, K. and Steeds, W., The Motor Vehicle, Butterworth-Heinemann, O Britain, London (2001).</li> <li>Reference Books:</li> <li>[R1] Norton, A. A., Book of the Car, Automobile Association, London (1977).</li> </ul>	Great							
[R2] Heinz, H., Advance Vehicle Technology, Arnold Publishers, Butterworth-Heinemann, Lot (1999).								
<ul><li>[R3] Crouse, W. and Anglin, D., Automotive Mechanics, Tata McGraw Hill, New Delhi (2006)</li><li>[R4] Heinz, H, Engine and Vehicle Technology, Arnold Publishers, Butterworth-Heinemann, L (2002).</li></ul>								

Approved by BoS of USAR 15/06/23,

_____

_____

Approved by AC sub-committee 04/07/23 Applicable from Batch admitted in Academic Session 2022-23 Onwards Page | 67

_____



Paper o	ode: A	RA 300	6							L	T/P	С
Subject	Subject: Advanced Robotics40									4		
Marking Scheme:												
Teachers Continuous Evaluation: As per university examination norms from time to time.												
End Term Theory Examination: As per university examination norms from time to time.												
INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: As per university										y norms		
	There should be > fuestions in the end term endimental fuestion puper.											
7	Question No. 1 should be compulsory and cover the entire syllabus. This question should have objec											ective or
	short answer type questions. It should be of 15 marks.											
A	- + ···· • • ···· • · ··· · · · · · · · ·											-
	should have two questions. However, students may be asked to attempt only 1 question from each un Each question should be 15 marks.											umr.
A	•											d/ level
	of the questions to be asked should be at the level of the prescribed textbooks.											
A												
Course	e Outco	omes[B]	loom's	Knowled	lge Leve	el (KL)]:						
	Gain a	an unde	rstandir	ng of the	theoretic	cal backg	round ne	cessary	to unders	tand adva	inced ro	botic
CO1	Gain an understanding of the theoretical background necessary to understand advanced robotic technologies and their specific applications. <b>[K1]</b>											
CO2	Develop skills in the selection and application of different robots for various tasks. <b>[K1, K</b> ]											[2]
CO3	Provide an understanding of the role of automation technology in robot industry. <b>[K3]</b>											
CO4	Gain theoretical and practical knowledge about the different robots. [K3,K4]											
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	2	3	3	-	-	-	3	3	1	2
CO2	3	2	3	2	3	-	-	-	3	3	2	2
CO3	3	3	3	2	2	-	-	-	3	2	2	3
CO4	3     3     2     3     3     -     -     3     3     2										3	
										No of lectures		
Unit I Review of serial, parallel robotic manipulators: Kinematic chain; Degrees of freedom; Forward and Inverse Kinematics; Dynamics										[10]		

_____

Approved by BoS of USAR 15/06/23,

-----

Approved by AC sub-committee 04/07/23 Applicable from Batch admitted in Academic Session 2022-23 Onwards Page | 68



<b>Different types of wheeled mobile robots and walking machines:</b> robots with wheels - Omni directional, torus, etc., legged robots - Biped, Quadruped, etc.	
<ul> <li>Unit II</li> <li>Algorithmic issues for inverse and forward kinematics of robotic systems: Efficiency (Computational Count); Accuracy in numerical calculations; Numerical stability (tolerances in numerical solutions of algebraic and differential equations).</li> <li>Kinematic design of serial and parallel robots based on singularity and workspace: Workspace and calculation, Singularity and calculation.</li> </ul>	[10]
Unit III	[10]
Manipulability and dexterity techniques	[10]
Dynamic algorithms -Inverse, forward: Formulation of dynamic model (equations of motion); Newton-Euler algorithm; Use of computer-orientated approaches, e.g., Decoupled Natural Orthogonal Complement (DeNOC) based; Inverse dynamics; Forward dynamics; Mechanical design (choice of material, cross-section, etc.)	
Unit IV Control of robotic systems: Basics of control; PD, PI and PID control; Force control; Adaptive control Mechanical design of robot links and joints: Design from mechanical failure and stiffness	[10]
criteria; Consideration of natural frequency in design.	
Text Books: [T1] Ghosal, A., "Robotics", Oxford, New Delhi, 2006 [T2] Siegwart, Illah R Nourbakhsh, Davide Scaramuzza, "Autonomous Mobile Robots", PHI, 2011.	
<ul> <li>Reference Books:</li> <li>[R1] Craig, J.J., "Introduction to Robotics: Mechanics and Control", Pearson, Delhi, 3rd Edition, 2009.</li> <li>[R2] Tsai, L, "Robot Analysis", John Wiley &amp; Sons, Singapore, 1999.</li> <li>[R3] Saha, S.K., "Introduction to Robotics", Tata McGraw Hill, 4th reprint, 2010.</li> </ul>	

_____

Approved by BoS of USAR 15/06/23, Applicable from Batch admitted in Academic Session 2022-23 Onwards

_____



Paper code: ARA 312T									L	T/P	С		
Subject: Measurement and Metrology										4	0	4	
Marking Scheme:													
Teachers Continuous Evaluation: As per university examination norms from time to time.													
End Term Theory Examination: As per university examination norms from time to time.													
INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: As per university										norms			
A											ctive or		
	short answer type questions. It should be of 15 marks.											•,	
$\wedge$													
	should have two questions. However, students may be asked to attempt only 1 question from each the Each question should be 15 marks.												
A												tandar	d/ level
	of the questions to be asked should be at the level of the prescribed textbooks.												
> The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required.													
Course Outcomes [Bloom's Knowledge Level (KL)]:													
CO1	Ability of students to calculate the capacity requirement of motor for electric vehicle. [K2, K3]											K3]	
CO2	Ability of students to understand the different electric vehicle architectures. [K1, K2]												
CO3	Ability of students to select and compare the different energy storage cell available. [K2, ]											[K2, I	K3]
CO4	Ability of students to design and optimize the different charging stations for electric vehic K3, K4]											vehic	le. [K2,
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	P	011	PO12
CO1	3	2	3	3	3	1	-	-	-	-		2	3
CO2	3	3	3	3	3	1	-	-	-	-		2	3
CO3	3	3	3	3	3	1	-	-	-	-		2	3
CO4	<b>CO4</b> 3 2 2 2 2 1 -											2	3
Course Content											No of lectures		
Unit I Introduction: Elements of Measurement System, Selection of Measuring Instruments, Types and										[10]			

Approved by BoS of USAR 15/06/23,

-----

Approved by AC sub-committee 04/07/23 Applicable from Batch admitted in Academic Session 2022-23 Onwards Page | 70



Performance Characteristics of various Instruments, Static and Dynamic Characteristics of Instruments, Type of Errors, Calibration, Accuracy, precision, limits fits and tolerances, types of assemblies, linear and angular measurements, design of limit gauges and applications. Limits, Fits and Tolerances: Concept and types of interchange ability, need for standard systems of limits, fits and tolerances, BIS standard system, selection of limits and fits, design principles for limit gauges. Types and tolerance of limit gauges, Taylor's principle for gauges, problems on hole and shaft based fit systems. Measuring and Gauging Instruments: Design principles of measuring instruments: kinematics design, principle of alignment pivots and bearings, sources of error in measurement, calibration and standardization of measuring instruments, linear and angular measuring instruments, venire callipers, micro -meters dial gauges, bevel protectors, sine bar, spirit level, Optical instruments: autocollimators, tool room microscope length measuring machines, Comparators: magnification principles types of comparators, mechanical optical, pneumatic, electrical and electronic comparators. Unit II Surface Roughness Measurement: Types of Surface Texture, Surface Roughness Measurement Methods, Comparison, Contact and Non-Contact type roughness measuring devices, 3D Surface Roughness Measurement, Nano Level Surface Roughness Measurement, Analysis of surface [10] roughness texture. Measurement of Form Errors: Straightness, flatness, alignment errors surface texture-various measuring instruments-run out and concentricity, Computational techniques in measurement of form errors. Unit III Screw Thread and Gear Metrology: Elements of screw thread, measurement of major, minor and effective diameters of external and internal screw threads, measurement of pitch and screw thread angle, effect of pitch error, elements of gear metrology, measurement of gear tooth thickness, gear profile, gear concentricity, pitch and run-out for involute gear, gear rolling test [10] Interferometery: Introduction, Principles of light interference, Interferometers, Measurement and Calibration, Laser Interferometry. Computer Aided Laser Metrology: Tool Makers Microscope, Coordinate Measuring Machines, Applications, Laser Micro meter, Laser Scanning gauge, Computer Aided Inspection techniques, In-process inspection, Machine Vision System, Applications, LASER micro meter, Optical-LASER interferometers, applications. **Unit IV** Measurement of Flow, Temperature & Pressure: Temperature Measurement: Radiation thermometers, optical pyrometers, radiation pyrometer, thermography, fiber optic temperature sensor, acoustic thermometer, Pressure Measurement: Capacitive pressure sensor, fiber optic pressure sensor, intelligent pressure transducer, Flow Measurement: Corilis Flow meter, Thermal [10] Mass Flow, Measurement, Positive Displacement Flow meter, Electro-magnetic and Ultrasonic Flow meter Measurement of Force and Torque: Mass Measurement: Electronic, Pneumatic, Smart and Intelligent load cells, Force Measurement: accelerometer, vibrating wire sensor, Torque

Approved by BoS of USAR 15/06/23,

Approved by AC sub-committee 04/07/23 Applicable from Batch admitted in Academic Session 2022-23 Onwards

Page | 71



Measurement: Optical Torque Measurement, Rotational Displacement Measurement: Circular and Helical Potentiometer, Rotational differential transformer, gyroscopes, Rotational Velocity Measurement: Digital and analogue tachometer, fiber optic gyroscope, Mechanical Flyball, Viscosity Measurement: Rotational Viscometer, Falling Body Viscometer.

#### **Text Books:**

[T1] A text-book of Metrology, M. Mahajan, Dhanpat Rai & Co. 2009

- [T2] Engineering Metrology, K. J. Hume, Mc Donald & Co (Publishers), London 1970
- [T3] Engineering Metrology, R. K. Jain, Khanna Publishers

#### **Reference Books:**

[R1] Metrology for Engineers, J.F.W. Galyer and C.R. Shotbolt, ELBS Edition, 1993

[R2] Engineering Metrology, Thomas. G. G, Butterworth Publisher 1974

_____

Approved by BoS of USAR 15/06/23, Appro Applicable from Batch admitted in Academic Session 2022-23 Onwards



Paper o	ode: A	RA 314	4T								L	T/P	С
Subject	: Auto	nomou	s Mobil	e Robot	s & UH	[V					4	0	4
Marki	ng Sch	eme:											
					-	-			s from ti				
End Te	rm The	ory Exa	aminatio	on: As pe	er unive	rsity ex	aminatio	on norms	from tim	e to tin	ne.		
INSTR	RUCTI	ONS T	O PAP	ER SET	TERS:		Ν	Maximur	n Marks	: As pe	r univ	ersity	norms
			-					uestion pa	•				
A								syllabus.	This ques	tion sho	ould ha	ve obje	ctive or
A		• •		ions. It sh				ist of four	units as p	or the a	ullabu	Ever	u unit
	-	-				• •			npt only 1				•
			-	e 15 mark						1			
$\checkmark$	The que	estions a	re to be	framed k	eeping ir	n view th	ne learnir	ng outcom	es of cour	se/paper	The s	tandar	d/ level
	-	-					-		extbooks.				
	-	-				-		a-tables m	ay be spec	cified if	require	d.	
Course	e Outco	omes[B]	loom's	Knowlee	lge Lev	el (KL)	)]:						
CO1	Under	stand th	ne princ	iples and	l concep	ots of au	itonomo	us mobil	e robots.	[K1, K	2]		
CO2	Identi	fy and e	explain	the comp	onents	and sen	sors use	d in auto	nomous r	nobile	robots	[K2,	K3]
CO3	Analy	ze and	design a	algorithm	ns for ro	bot per	ception,	localizat	ion, and r	nappin	g. [ <b>K3</b>	,K4]	
CO4	Devel	op skill	s in rob	ot motio	n plann	ing and	control.	[K4]					
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO1	0 P	011	PO12
CO1	3	3	3	3	3	-	-	-	3	3		1	2
CO2	3	2	3	3	3	-	-	-	3	3		2	2
CO3	3	3	3	2	2	-	-	-	3	2		2	3
CO4	3	3	2	3	3	-	-	-	3	3		2	3
Course	e Conte	ent											No of lectures
Unit I Introd	uction	of Mob	ile Rob	otics									[10]
									cations a Surveilla				

_____

Approved by BoS of USAR 15/06/23, Applicable from Batch admitted in Academic Session 2022-23 Onwards

-----

Approved by AC sub-committee 04/07/23 Onwards Page | 73



	<b></b>
applications, Locomotion, Key issues in locomotion, legged, wheeled and aerial mobile robots. Mobile Robot Kinematics: Introduction, kinematic models and constrains, mobile robot workspace, beyond basic kinematics, motion control (kinematic control).	
Unit II Perception, robotics architectures and Robot Learning: Sensors Classification, sensor characterization, wheel/motor encoders, heading/orientation sensors, ground based beacons, active ranging, motion/speed sensors, vision based sensors. Low level control, Control architectures, software frameworks, Robot Learning, case studies of learning robots.	
Unit III Mobile Robot Localization: Introduction, the challenge of localization: Noise and aliasing, to localize or not to localize: localization based navigation versus programmed solutions, map representation, probabilistic map, map based localization, autonomous map building. Planning and navigation: Planning and reaction, obstacle avoidance, D* algorithm, Navigation architecture, case studies.	
<ul> <li>Unit IV</li> <li>Unmanned Hybrid Vehicle</li> <li>Overview of unmanned systems, Introduction to hybrid powertrain technology, Components and sensors used in unmanned systems, Perception and sensing technologies, Benefits and challenges of unmanned hybrid vehicles, Case Studies and Applications.</li> <li>Unmanned Hybrid Drones</li> <li>Drone components and their functions, Types of drones and their applications, Drone aerodynamics and flight principles, Autonomous flight control systems, Sensors for perception and environment sensing, Navigation and localization techniques (GPS, inertial sensors, visual odometry).</li> </ul>	
Text Books:         [T1] Roland Siegwart & Illah R. Nourbakhsh, "Introduction to autonomous mobile robots", Pr         Hall of India, 2004.         [T2] George A. Bekey "Autonomous Robots" MIT Press.	rentice
Reference Books:         [R1] Kavrakiand Sebastian Thrun, "Principles of Robot motion: Theory, Algorithm and         Implementations", MIT Press.         [R2] Richard Szeliski: "Computer Vision : Algorithms and Applications", 2010 Springer.         [R3] Alexander Hornberg: "Handbook of Machine Vision", Wiley-VCH.         [R4] DIY Drone and Quadcopter Projects by The Editors of Make: Released April 2016 Public         Make: Community ISBN: 9781680451290	isher(s):
Approved by BoS of USAR 15/06/23, Approved by AC sub-committee 04/07/	

Approved by BoS of USAR 15/06/23, App Applicable from Batch admitted in Academic Session 2022-23 Onwards



Paper o	code: A	RA 316	T								L	T/P	С
Subject	: Com	puter Iı	ntegrat	ed Manu	<b>ıfactur</b> i	ing					4	0	4
Marki	ng Sch	eme:								l			<u> </u>
				-		•		ion norm					
		-				rsity exa		on norms					
				ER SET				Aaximun		: As pe	r univ	ersity	norms
			-				-	uestion pa	•				
A				be compul ions. It sh				syllabus.	This ques	stion sho	uld hav	ve obje	ctive or
$\checkmark$								ist of four	units as	per the s	vllabus	. Ever	v unit
	-							ed to atter		-	-	-	
	-			e 15 mark									
A	_							ig outcom			The s	tandar	d/ level
E.	-	-					-	rescribed t				J	
			-	Knowled		Ũ		a-tables ma	ay be spe		require	a.	
Course		•			0								
CO1	Ability	y of stud	ents to u	nderstanc	l the bas	ic funda	mentals o	of NC/CN	C machir	e tools.	[K1, K	[2]	
CO2	Ability [ <b>K2, F</b>		lents to a	analyze m	nanufact	uring str	ategies fo	or automa	tion for v	arious ir	dustry	enviroi	iments.
CO3	Ability	y of stud	ents to a	ssess the	perform	ance of f	flexible n	nanufactu	ring syste	ms. <b>[K2</b>	,K3]		
CO4	•		ents to d [K3, K4	·	systemat	tic appro	ach for d	lesign and	impleme	ntation (	of NC l	Part	
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	Р	011	PO12
CO1	3	3	2	3	3	2	-	-	-	-		2	3
CO2	3	3	3	3	3	2	-	-	-	-		2	3
CO3	3	3	3	3	3	2	-	-	-	-		2	3
CO4	3	3	3	3	3	2	-	-	-	-		2	3
Course	e Conte	ent			<u></u>						-		No of
<b></b>													lectures
Unit I	otion I			terminol		noration	e of NC	/CNC ma	ochina to	ole Co	atrol a	velos	[10]
						-		It Device				•	
								gy for the					
advanta	ages &l	imitatic	ons of us	sing CNO	2 techno	ology.							

Approved by BoS of USAR 15/06/23, Applicable from Batch admitted in Academic Session 2022-23 Onwards

_____

Approved by AC sub-committee 04/07/23 Onwards Page | 75



[10]
[10]
[10]

_____

Approved by BoS of USAR 15/06/23, Approved Applicable from Batch admitted in Academic Session 2022-23 Onwards

_____

Approved by AC sub-committee 04/07/23 Drivards Page | 76



Paper o	code: A	RA 318	BT								L	Р	Credit
Subject	t: Elect	ric Mac	chine a	nd Drive	es						4	0	4
Marki	ng Sch	eme:											
				-		•				ime to time.			
		-				rsity ex	aminatio	on norms	from tin	ne to time.			
INSTR	RUCTI	ONS TO	O PAPI	ER SET	TERS:			Maxir	num Ma	rks: As per u	nive	rsity n	orms
			-					uestion p	-				
<b>&gt;</b>	-				•		ne entire	syllabus.'	This ques	tion should hav	e obje	ective o	r short
A				[t should ]			hall aana	ist of four	unita oa i	or the cullebug	Evo		hould
	Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, students may be asked to attempt only 1 question from each unit. Each question												
		be 15 m		,				·····F· ···	- <u>j</u> - 1			1	
$\checkmark$	The que	estions a	re to be	framed k	eeping i	n view t	he learni	ng outcoi	nes of co	urse/paper. The	e stan	dard/ le	evel of
	-						-	cribed tex					
		-						a-tables m	ay be spe	cified if require	ed		
Course	e Outco	omes [B	loom's	Knowle	dge Le	vel (KL	.)] <b>:</b>						
	Abilit	y of stu	dents t	o unders	tand an	d apply	the con	ncepts fo	r operati	ng and contro	olling	the v	arious
CO1	electri	ic motor	rs <b>[K1,</b>	K2, K3]									
		y of stuc	lents to	understa	nd the b	pasics co	oncepts	of perma	nent mag	gnet and reluct	ance	motor	s [ <b>K1</b> ,
CO2	K2]												
CO3	Abilit K3, K	•	lents to	understa	nd the b	basics co	oncepts,	analyze	and appli	ication of DC	moto	r drive	s [ <b>K2</b> ,
CO4	Abilit	y of stu	dents to	understa	and the	basics c	concepts	of induc	tion mot	or drives [K1]	, K2]	•	
	Cour	rse Out	come to	) Progra	m Outo	comes, l	Mappin	g (Scale	1: Low,	2: Medium,	3: Hi	gh)	
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11		PO12
CO1	3	3	3	3	3	1	-	-	-	1	2		3
CO2	3	3	3	3	3	1	-	-	-	1	2		3
CO3	3	3	3	3	3	1	-	-	-	1	2		3
CO4	3	3	3	3	3	1	-	-	-	1	2		3
Course	e Conte	ent											o of tures

_____

Approved by BoS of USAR 15/06/23,

-----

Approved by AC sub-committee 04/07/23

Applicable from Batch admitted in Academic Session 2022-23 Onwards



Unit I FRACTIONAL HORSEPOWER MOTORS: Single Phase Induction Motor, Double revolving field theory, equivalent circuit, No-load and Block rotor test, Starting methods of single-phase induction motors, Application of single-phase AC series motor, AC servo motor. STEPPER MOTOR: Principle of operation, characteristic and analysis of stepper motor and types, drive circuit and switching diagram, microprocessor-based control of stepper motor.	[10]
Unit II RELUCTANCE MOTORS: Principle of operation, construction, characteristics and analysis of variable reluctance motor and switched reluctance motor, mode of operations, Drive circuits, microprocessor-based control of SRM, sensor less control. PERMANENT MAGNET MOTORS: Construction, working principle, torque equation, equivalent circuit, performance and application of permanent magnet brushed DC (PMBDC) motors and permanent magnet brushed less PMBLDC motor, DC and AC tacho generator.	[10]
<b>Unit III</b> <b>DC MOTOR AND DRIVES:</b> Principle of operation, construction, characteristics and types of DC motors, DC motor speed control, methods of armature control, starting, and braking of DC motor, semi-conductor-controlled drives, rectifier fed controlled DC drives, Chopper controlled DC Drives, four quadrant operation of DC motor.	[10]
<b>Unit IV</b> <b>INDUCTION MOTOR DRIVES:</b> Three phase induction motor starting, braking, speed control of induction motor from stator sides, speed control of induction motor from rotor sides, variable frequency control from voltage sources and current sources, slip power recovery, scherbius and Kramer drive.	[10]
<b>Text Books:</b> [T1] Nagrath I. J. Kothari D. P. (2011'). Electric machines. McGraw-Hill Education. 3 rd edition. [T2] Ashfaq Hussain, Electric machines 2 nd edition, Dhanpat Rai and Co. (Pvt) Ltd. [T3] Power Semiconductor and Drives, Gopal K. Dubey.	
Reference Books: [R1] Mohan N. (2012). Electric machines and drives, Wiley India publication. [R2] Sen P. C'. (2002). Principle of Electric machines and Power electronics, Wiley publications.	

------

Approved by BoS of USAR 15/06/23, Applicable from Batch admitted in Academic Session 2022-23 Onwards

Approved by AC sub-committee 04/07/23 Onwards Page | 78



Paper C	ode: A	RA 320	)T								L	T/P	C
Subject:	Embe	dded Sy	stems								4	-	4
Teacher	Marking Scheme: Teachers Continuous Evaluation: As per university examination norms from time to time. End Term Theory Examination: As per university examination norms from time to time.												
INSTR	UCTIO	NS TO	PAPEF	R SETT	ERS:	Max	imum N	Aarks: A	As per u	iniversity	examir	natio	n norms
<ol> <li>There should be 9 questions in the end term examination question paper</li> <li>Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 15 marks.</li> <li>Apart from Question No. 1, rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, student may be asked to attempt only 1 question from each unit. Each question should be 15 marks.</li> <li>The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/level of the questions to be asked should be at the level of the prescribed textbooks.</li> <li>The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required</li> </ol>													
Course	Outcon	mes:											
CO1:	Under	stand di	ifferent	design	method	ologies	for emb	bedded s	system of	lesign [ <b>K</b> 1	l,K2]		
CO2:	Design	n Contro	ol unit a	and data	n path us	sing cor	nputatio	onal mo	dels. [K	2,K3]			
CO3:		ibe Inter Ided sys	-			veral sta	undard s	ingle pı	ırpose p	processors	comm	only	found in
CO4:		roduce ] <b>K2,K3]</b>		of Real 1	time op	erating	system a	and disc	uss on o	one real-ti	ne ope	ratin	g system
Course	Outcon	mes (C	O) to P	rogram	me Ou	tcomes	(PO) M	Iapping	g (Scale	1: Low, 2	: Medi	um, 3	3: High
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO	11	PO12
CO1	3	2	3	1	2	-	2	-	1	1	-		2
CO2	3	2	3	1	2	-	2	-	1	1	-		2
CO3	3	-	3	1	2	-	2	-	1	1	-		2
CO4	3	2		1	-	-	2	-	1	-	-		2
Course	Conter	nt											No of lectures

_____

Approved by BoS of USAR 15/06/23,

-----

Approved by AC sub-committee 04/07/23

Applicable from Batch admitted in Academic Session 2022-23 Onwards



Unit I	[8]
Introduction of Embedded System: Overview of Embedded Systems, Feature Requirements and Applications, Recent Trends in the Embedded System Desig Common architectures for the Embedded System Design, Embedded Software desi issues. Introduction to microcontrollers, Overview of Harvard architecture and V Neumann architecture, RISC and CISC microcontrollers, Architecture of 8051, F Function of 8051 microcontroller.	n, gn on
Unit II	[10]
AVR Microcontroller: Introduction to AVR Microcontroller, Architecture and F Configuration, Register and memory mapping, Status Register, Instruction set, Da Transfer Instructions, Arithmetic and Logic Instructions, Branch Instructions, Bit and B test Instructions, MCU Control Instructions, Delay time loop	ta
Unit III	[10]
Interrupts and Timer: Introduction to System Clock, Reset sources, Introduction interrupts, External interrupts, UART-Basic Operation, I/O Register configuring, IO Por 8-bit and 16-bit Timer block diagram, Modes- Output Compare Mode, Fast PWM Mod CTC Mode, Simple programs in C Language, AVR I/O Port Programming	ts,
<b>Unit IV</b> Peripherals Interfacing: Analog Comparator, ADC, DAC and sensor interfacing, Serial Peripheral Interface (SPI), The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART), I2C Protocol and RTC interfacing, 7- Segment LED Display, Opto-isolator and Stepper Motor Interfacing, Relay.	[12]
Real-time operating systems: Implementation of context switching, threads, multitaskir real-time scheduling, synchronization, real-time systems, including data acquisition sensing, actuating, digital control, signal processing, and robotics	<b>U</b>
<b>Text Books:</b> [T1] Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi, (2013) AVR Microcontroller and Embedded Systems: Using Assembly and C, Pearson, 1st edition. [T2] Dhananjay Gadre, (2001) Programming and Customizing the AVR Microcontroller, McGraw Hill, Educ [T3] Frank Vahid and Tony Givargis, (2006) Embedded system Design A unified hardware/software Introduc Wiley.	
Reference Books: [R1] Programming and Customizing the AVR Microcontroller by D V Gadre, McGrawHill [R2] Atmel AVR Microcontroller Primer: Programming and Interfacing by Steven F. [R3] Barrett, Daniel J. Pack, Morgan & Claypool Publishers [R4] An Embedded Software Primer by David E Simon, Addison Wesley. [R5] AVR Microcontroller Datasheet, Atmel Corporation, www.atmel.com	

Approved by BoS of USAR 15/06/23, Applicable from Batch admitted in Academic Session 2022-23 Onwards

_____

_____

Approved by AC sub-committee 04/07/23 nwards Page | 80

_____



<b></b>										1	-	1
Paper Code: A										L	T/P	C
Subject: VLSI	Design	for Au	tomatio	n						4	-	4
Marking Sche Teachers Cont End Term The	inuous I		-		•							
INSTRUCTIO	NS TO	PAPER	R SETT	ERS:			Maxi	mum M	arks: A	s per un	iversity	y norms
<ol> <li>There should be 9 questions in the end term examination question paper</li> <li>Question No. 1 should be compulsory and cover the entire syllabus. This question should have object or short answer type questions. It should be of 15 marks.</li> <li>Apart from Question No. 1, rest of the paper shall consist of four units as per the syllabus. Every u should have two questions. However, students may be asked to attempt only 1 question from each unit. Ea question should be 15 marks.</li> <li>The questions are to be framed keeping in view the learning outcomes of the course/paper. The standa level of the questions to be asked should be at the level of the prescribed textbooks.</li> <li>The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required</li> </ol>												
Course Outcon	nes :											
CO1: Students	s will un	derstand	d and de	efine vai	rious asp	bects of	VLSI pł	nysical o	lesign a	nd autor	nation.	[K1,K2]
CO2: The abil								-	_			
CO3: Illustration	ng the E	DA sim	ulator f	or circui	it desigr	and cir	cuit sim	ulation	process.	[K3,K4	4]	
CO4: Understa [K2,K3,K4]	and , app	ply and	analyze	the laye	out desig	gning of	various	VLSI c	vircuits a	nd devi	ces.	
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	2	3	3	-	-	-	-	1	-	3
CO2	3	3	2	3	3	-	-	-	-	1	-	3
CO3	3	3	2	3	3	-	-	-	-	1	-	3
CO4	3	3	3	3	3	-	-	-	-	1	-	3
Course Conte	nt	I	<b>I</b>				1	1	1	1		No of lectures
Unit I Physical Design behavioural, log VLSI design cy layers, increasi Partitioning, Flo design cycle: ch Field programm	gic, circu cle: Incr ng plani por-plani ip level	it, & ph easing ir ning req ning and signal pl	ysical denterconne uiremen Placem anning,	esign, fal ect delay ts, logic ent, Rou OTC rou	orication y, increas synthe ting, Ex ting, De	, packagi sing inter sis, high traction sign Styl	ing, testi connect -level sy and Ver les: Full	ng and c area, inc ynthesis, ification, custom,	lebuggin reasing Physica New tro standard	g, new ta number o al desigr ends in j	rends in of metal of cycle: ohysical	

Approved by BoS of USAR 15/06/23, Applicable from Batch admitted in Academic Session 2022-23 Onwards

-----

Approved by AC sub-committee 04/07/23 Drwards Page | 81



Unit II VLSI Fabrication Process: Fabrication materials, MOS architecture, Fabrication of integrated circuits,	[8]
material growth and oxidation: silicon dioxide, silicon nitride, Polycrystalline silicon, metals, doped silicon	
layers: diffusion & ion implantation, chemical mechanical polishing, Lithography: clean room, nMOS, pMOS	
fabrication steps, CMOS process flow, field oxide, shallow trench isolation	
Unit III	[12]
<b>Circuit simulator:</b> Simulator basics and type of simulators, historical perspective, circuit simulations: DC analysis: sweeping a source, the. dc statement, printing output, plotting output, graphics output, subcircuits, Ac analysis: specifying input source, Plotting bode plot, plotting group delay, input impedance, plotting output impedance, Noise analysis: the noise statement, print and plot output, signal to noise, inserting noise source,	
Transient analysis: Simulating time, specifying input source, the . trans statement, graphic output and calculation, setting initial conditions, transient solution for static problems, distortion and spectral analysis: Fourier decomposition, the four statement, large signal distortion, harmonic recomposition, intermodulation distortion	
Unit IV	[10]
<b>Layout Simulation:</b> MOSFET Scaling and short channel effects, Layout design rules: micron & lambda rules: size rules, separation rules, Overlap rules, Layouts of basic devices: nMOS, pMOS, Basic gate design: CMOS Inverter, NAND, NOR, Transmission Gate, Memory cells: 6T SRAM, DRAM.	[10]
Basics of EDA tools: Layout and basics of simulators: Layout editor, Extraction, Design rule check, Layout versus Schematic, Pacing, Routing, Electrical Rule check, Lithography process check.	
<b>Text Books:</b> [T1] Naveed Sherwani (2002) Algorithms for VLSI Physical Design Automation, Kluwer AcademicPublishers [T2] John P. Uyemura (2001) Introduction to VLSI Circuits and Systems, Wiley India. [T3] Paul W. Tuinenga, (1993) SPICE A guide to circuit simulation and analysis using PSPICE,Prentice Hall.	
<b>Reference Books:</b> [R1] S. M. Sze (2017) VLSI Technology, 2 nd Edition, McGraw Hill.	
[R2] Kenneth S. Kundert () The designer's guide to SPICE and SPECTRE, Kluwer Academic Publisher	S

_____

-----

_____



# DETAILED SYLLABUS FOR 7th SEMESTER

Approved by BoS of USAR 15/06/23, Approved by AC sub-committee 04/07/23 Applicable from Batch admitted in Academic Session 2022-23 Onwards Page | 83



Paper o	ode: A	RA 401	L								L	T/P	С
				Automat	tion						4	0	4
Marki													
Teache	rs Cont	inuous	Evaluat	ion: As p	per univ	versity e	xaminat	ion norm	is from ti	ne to tin	ne.		
		-				rsity ex	aminatio	on norms	from tim	e to time	•		
INSTR	RUCTI	ONS T	O PAPI	ER SET	TERS:		Ν	Maximur	n Marks	: As per	univ	ersity	norms
>	Questic short ar Apart fr	on No. 1 nswer tyj rom Que	should b pe questi estion No	be compul ions. It sh	lsory and ould be est of the	d cover t of 15 m e paper s	he entire arks. hall cons	sist of four	aper. This ques r units as p mpt only 1	er the syl	labus	. Every	y unit
٨	The que of the q The req	estions a uestions uiremen	re to be to be as t of (scie	ked shou entific) ca	eeping ir ld be at t llculator	the level s/ log-ta	of the pr bles/ data	rescribed t	es of cour textbooks. ay be spec				d/ level
Course	e Outco	omes[B	loom's .	Knowled	ige Lev	vel (KL	)]:						
CO1									ion princ . <b>[K1, K2</b>		con	cepts,	
CO2			learn to <b>K1,K3</b> ]		and imp	lement	automat	ed syster	ns by sele	ecting ap	propi	riate	
CO3	Studer	nts will	acquire	program	nming s	kills rel	evant to	automat	ion.[ <b>K4]</b>				
CO4	Studer [ <b>K3,K</b>		develop	o the abil	ity to tr	oublesh	oot and	maintain	integrate	d autom	ation	syster	ns.
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	Р	011	PO12
CO1	3	3	3	3	3	-	-	-	1	3		1	2
CO2	3	3	3	3	3	-	-	-	2	3	1	1	2
CO3	2	3	3	2	3	-	-	-	3	3		2	3
CO4	2	3	3	3	2	-	-	-	3	3		2	3
Course	e Conte	ent											No of lectures

_____ _____

Approved by BoS of USAR 15/06/23,

_____



<ul> <li>Unit I</li> <li>Totally integrated automation: Need, components of TIA systems, advantages, Programmable Automation Controllers (PAC), Vertical Integration structure.</li> <li>HMI SYSTEMS: Necessity and Role in Industrial Automation, Need for HMI systems. Types of HMI- Text display - operator panels - Touch panels - Panel PCs - Integrated displays (PLC &amp; HMI). Check with PLC 502 and remove.</li> </ul>	[10]
<b>Unit II</b> <b>Supervisory control and data acquisition (SCADA):</b> Overview – Developer and runtime packages – architecture – Tools – Tag – Internal &External graphics, Alarm logging – Tag logging – structured tags– Trends – history– Report generation, VB & C Scripts for SCADA application.	[10]
<b>Unit III</b> <b>Communication protocols of SCADA:</b> Proprietary and open Protocols – OLE/OPC – DDE – Server/Client Configuration – Messaging – Recipe – User administration – Interfacing of SCADA with PLC, drive, and other field device.	[10]
<b>Unit IV</b> <b>Distributed control systems (DCS):</b> DCS – architecture – local control unit- programming language – communication facilities – operator interface – engineering interfaces. APPLICATIONS OF PLC & DCS: Case studies of Machine automation, Process automation, Introduction to SCADA Comparison between SCADA and DCS.	[10]
Text Books:	
<ul> <li>[T1] John.W.Webb &amp; Ronald A. Reis, "Programmable logic controllers: Principles and Applica Prentice Hall India, 2003.</li> <li>[T2] Michael P. Lukas, "Distributed Control systems", "Van Nostrand Reinfold Company"199</li> <li>[T3] David Bailey, Edwin Bright, "Practical SCADA for industry", Newnes, Burlington, 2003.</li> <li>[T4] Gordon Clarke, Deon Reyneders, Edwin Wright, "Practical Modern SCADA Protocols: DNP3, 60870.5 and Related systems", Newnes Publishing, 2004.</li> </ul>	5.
<ul> <li>[T1] John.W.Webb &amp; Ronald A. Reis, "Programmable logic controllers: Principles and Applica Prentice Hall India, 2003.</li> <li>[T2] Michael P. Lukas, "Distributed Control systems", "Van Nostrand Reinfold Company"199</li> <li>[T3] David Bailey, Edwin Bright, "Practical SCADA for industry", Newnes, Burlington, 2003.</li> <li>[T4] Gordon Clarke, Deon Reyneders, Edwin Wright, "Practical Modern SCADA Protocols:</li> </ul>	5.

_____ _____

Approved by BoS of USAR 15/06/23,

-----



Paper co	ode: A	RA 403	_							L	T/P	С
Subject	: Addit	ive Ma	nufactı	iring						4	-	4
	s Conti	nuous E		-		ersity exam sity exami						
INSTRU	UCTIO	NS TO	PAPE	R SET	FERS: N	Aaximum	Marks:	As per ur	niversity n	orms		
> ( c > A s H > ] c	Questio or short Apart fr hould H Each qu The que of the qu	n No. 1 answer om Que nave two estion s stions a uestions	should type question N o questi hould b re to be s to be a	be com lestions lo. 1, the ons. Ho be 15 ma framed sked sh	pulsory a . It shoul e rest of wever, s arks. I keeping ould be a	term exam and cover d be of 15 the paper s tudents ma g in view th at the level	the entire marks. shall cons ay be aske he learnin l of the pr	syllabus. ist of four ed to atter g outcom escribed t	This quest units as p npt only 1 es of cours extbooks.	er the syll question f se/paper. T	abus. Eve rom each 'he standa	ery unit unit.
	-					ors/ log-ta	bles/ data	-tables m	ay be spec	ified if rec	luired	
		-			-	vel (KL)]:						
CO1:		•				sics of add				[K1, K2]		
CO2:		-		-		us liquid-b		-				
CO3:		y of stu <b>3, K4</b> ]	dents to	how h	about ex	trusion, sh	eet-lamin	ation and	powder-b	ased AM	processes	. <b>[K1,</b>
CO4:	Abilit	y of stu	dents to	o develo	p unders	standing al	pout the n	netal base	AM proce	esses. [K1	, K2, K3,	K4]
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	2	2	3	2	-	-	-	3	1	2	3
CO2	3	2	3	3	2	-	-	-	3	1	2	3
CO3	3	3	3	3	3	-	-	-	3	1	3	3
CO4	3	3	3	3	2	-	-	-	3	1	3	3
Course	Conter	nt				I	I	I	L	I	I	No of Lect.
Unit I												[10]

_____

Approved by BoS of USAR 15/06/23,

-----

Approved by AC sub-committee 04/07/23

Applicable from Batch admitted in Academic Session 2022-23 Onwards

Page | 86



Introduction to Additive Manufacturing: Introduction to AM, Evolution of Printing as an Additive	
Manufacturing Process, Distinction between AM & CNC machining, Steps in AM, Classification of AM	
processes, Advantages of AM and Types of materials for AM.	
Materials science for AM - Multifunctional and graded materials in AM, Role of solidification rate,	
Evolution of non-equilibrium structure, microstructural studies, Structure property relationship, case	
studies.	
Post Processing of AM Parts: Support Material Removal, Surface Texture Improvement, Accuracy	
Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancements using Non-	
thermal and Thermal Techniques, case studies.	
<b>Guidelines for Process Selection:</b> Introduction, Selection Methods for a Part, Challenges of Selection,	
Example System for Preliminary Selection, Process Planning and Control.	
Unit II	
Vat Photopolymerization AM Processes: Stereolithography (SL), Materials, Process Modeling, SL resin	
curing process, SL scan patterns, Micro-stereolithography, Mask Projection Processes, Two-Photon vat	
photopolymerization, Process Benefits and Drawbacks, Applications of Vat Photopolymerization, case	
studies.	
Material Jetting AM Process: Material Jetting Process, Materials, Process Benefits and Drawbacks,	
Applications of Material Jetting Processes.	
Binder Jetting AM Process: Binder Jetting Process, Materials, Process Benefits and Drawbacks, Research	
achievements in printing deposition, technical challenges in printing, Applications of Binder Jetting	
Processes.	[12]
Unit III	
Extrusion-Based AM Processes: Fused Deposition Modelling (FDM), Principles, Materials, Process	
Modelling, Plotting and path control, Bio-Extrusion, Contour Crafting, Process Benefits and Drawbacks,	
Applications of Extrusion-Based Processes, case studies.	
Sheet Lamination AM Processes: Bonding Mechanisms, Materials, Laminated Object Manufacturing	
(LOM), Ultrasonic Consolidation (UC), Gluing, Thermal bonding, LOM and UC applications, case studies.	
Powder Bed Fusion AM Processes: Selective laser Sintering (SLS), Materials, Powder fusion	
mechanism and powder handling, Process Modelling, SLS Metal and ceramic part creation, Electron	
Beam melting (EBM), Process Benefits and Drawbacks, Applications of Powder Bed Fusion Processes,	
case studies.	[10]
Unit IV	
Directed Energy Deposition AM Processes: Process Description, Material Delivery, Laser Engineered	
Net Shaping (LENS), Direct Metal Deposition (DMD), Electron Beam Based Metal Deposition, Processing-	
structure-properties, relationships, Benefits and drawbacks, Applications of Directed Energy Deposition	
Processes.	[8]

Approved by BoS of USAR 15/06/23, Approved by AC sub-committee 04/07/23 Applicable from Batch admitted in Academic Session 2022-23 Onwards

_____

_____

-----

Page | 87



**Friction-stirs additive manufacturing:** process, parameters, advantages, limitations and applications, Additive friction stir deposition process: principle, parameters, applications, functionally graded additive manufacturing components, Case studies.

Wire Laser/Arc Additive Manufacturing: Process, parameters, applications, advantages and disadvantages, case studies.

# **Text Books:**

[T1] Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, Ian Gibson, David W Rosen, Brent Stucker, Springer, 2015, 2nd Edition.

[T2] 3D Printing and Additive Manufacturing: Principles & Applications, Chua Chee Kai, Leong Kah Fai, World Scientific, 2015, 4th Edition.

[T3] Additive Manufacturing, Second Edition, Amit Bandyopadhyay Susmita Bose, CRC Press Taylor & amp; Francis Group, 2020.

[T4] Additive Manufacturing: Principles, Technologies and Applications, C.P Paul, A.N Junoop, McGrawHill, 2021.

# **Reference Books:**

[R1] Rapid Prototyping: Laser-based and Other Technologies, Patri K. Venuvinod and Weiyin Ma, Springer, 2004.

[R2] Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Tooling, D.T. Pham, S.S. Dimov, Springer 2001.

[R3] Design for Advanced Manufacturing: Technologies and Process, Laroux K, Gillespie, McGrawHill, 2017.
 [R4] Additive Manufacturing Technologies, Gibson, Ian, David W. Rosen, Brent Stucker, and Mahyar Khorasani, Springer, 2021.

_____

Approved by BoS of USAR 15/06/23, Appro Applicable from Batch admitted in Academic Session 2022-23 Onwards

Approved by AC sub-committee 04/07/23 wards Page | 88



Paper o	code: A	RA 41	L								L	T/P	С
Subject	t: Soft ]	Robotic	s								4	0	4
Marki	ng Sch	eme:											
Teache	ers Cont	tinuous	Evaluat	ion: As p	per univ	ersity e	xaminat	ion norm	s from tii	ne to ti	me.		
End Te	erm The	eory Exa	aminatio	on: As pe	er unive	rsity ex	aminatio	on norms	from tim	e to tim	e.		
INSTR	RUCTI	ONS T	O PAPI	ER SET	TERS:		Ν	/laximun	n Marks	: As pe	r univ	ersity	norms
			-				-	uestion pa	<b>^</b>				
$\checkmark$				-	•			syllabus. '	This ques	tion sho	ıld hav	ve obje	ctive or
		• •		ions. It sh					•,	.1	11 1	F	•
$\checkmark$	-							ist of four ed to atten	-			•	
			-	e 15 mark			ty DC ask		ipt only i	questio			
A	-					n view th	ne learnin	g outcome	es of cour	se/paper	. The s	tandar	d/ level
	-							escribed to					
A	The req	luiremen	t of (scie	entific) ca	lculator	s/ log-ta	bles/ data	-tables ma	y be spec	ified if 1	require	d.	
Course	e Outco	omes[B	loom's I	Knowled	lge Lev	vel (KL)	)]:						
CO1	Desig	n, comp	oose, co	nstruct, a	and eval	uate so	ft roboti	es prototy	pes for s	pecific	tasks.	[K1, I	K2]
CO2	Test a	nd anal	yze the	performa	ance of	soft rob	otic eler	nents and	interpre	t the res	ults. [	K1, K	2,K3]
CO3	Fabric	cate fun	ctioning	, soft rob	otic dev	vices ma	ade of co	ompliant i	naterials	. [ <b>K3,K</b>	[4]		
CO4	Devel	op nove	el soft ro	bot desi	gns, sof	ît roboti	c compo	onents, or	fabricati	on tech	niques	s. [ <b>K4</b> ]	
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	P	011	PO12
CO1	3	3	3	3	3	-	-	-	3	3		1	2
CO2	3	2	3	3	3	-	-	-	3	3		2	2
CO3	3	3	3	2	2	-	-	-	3	2		2	3
CO4	3	3	2	3	3	_	-	-	3	3		2	3
Course	e Conte	ent											No of lectures
						,		Differenc ns, Muscı					[10]

_____

Approved by BoS of USAR 15/06/23,

_____



Plant Structure, Soft Robots, Actuators, Pneumatic Artificial Muscles, Electroactive Polymers, Shape Memory Alloys.	
Unit II Soft Sensors: Soft sensors for strain, force, contact, embedding sensors in soft systems. Elastic bodies: Design, concept, and potentials of flexible body. Flexible Electronics: Flexible electronics design, current status, and applications.	[10]
<ul> <li>Unit III</li> <li>Information processing in Soft robotics: Information processing in Soft robotics, physical reservoir computing.</li> <li>3D printing of Soft materials: Soft materials, gel, and their 3D printing, Biomedical applications.</li> </ul>	[10]
<ul> <li>Unit IV</li> <li>Physics of soft bodies: Modelling and Physics of soft bodies.</li> <li>Soft robot application: Applications and potentials in the future, Biomedical Robots, Robots in Food and Agriculture, Industrial and Consumer Robotics, Edible Robots, Climbing Robots, Prosthetic Robots and Automotive Robots.</li> </ul>	[10]
<ul> <li>Text Books:</li> <li>[T1] Luca magagnin, Filippo rossi "Advances in chemical engineering soft robotics Elsevier, academic press, Year: 2021.</li> <li>[T2] Gareth J. Monkman, "Soft Robotics", Bentham Science Publishers, Year: 2022.</li> </ul>	
<ul> <li>Reference Books:</li> <li>[R1] Cecilia Laschi, Jonathan Rossiter, Fumiya Iida, Matteo Cianchetti, Laura Margheri "Soft Robotics: Trends, Applications and Challenges", Proceedings of the Soft Robotics Week, 25-30, 2016, Livorno, Italy.</li> <li>[R2] Matthew Borgatti,Kari Love, "Make: Soft Robotics: A DIY Introduction to Squishy, Stret and Flexible Robots", Make Community, LLC, 9781680450934, 168045093X,22 January</li> </ul>	chy,

------

Approved by BoS of USAR 15/06/23, Approved by Applicable from Batch admitted in Academic Session 2022-23 Onwards

Approved by AC sub-committee 04/07/23 Dnwards Page | 90



Paper o	code: A	RA 413	3								L	T/P	С
Subject	t: Fluid	System	ns								4	0	4
Marki	ng Sch	eme:											
Teache	ers Cont	tinuous	Evaluat	ion: As j	per univ	versity e	xaminat	tion norm	s from ti	ne to tir	ne.		
End Te	erm The	eory Exa	aminatio	on: As pe	er unive	ersity ex	aminatio	on norms	from tim	e to tim	э.		
INSTE	RUCTI	ONS T	O PAPI	ER SET	TERS:		Ι	Maximun	n Marks	: As per	univ	versity	norms
X			-					luestion pa	•				
$\checkmark$				_				syllabus. '	This ques	tion shou	ld hav	ve obje	ctive or
		• •		ions. It sh					•,	.1		г	•,
	-	-				· ·		sist of four ed to atten	-	•		-	•
			-	e 15 mark			iy be usk	ed to diten	ipt only I	question	i nom		
>						n view tł	ne learnir	ng outcome	es of cours	se/paper.	The s	tandar	d/ level
	of the q	uestions	s to be as	ked shou	ld be at	the level	of the pr	rescribed to	extbooks.				
٨	The req	luiremen	nt of (sci	entific) ca	alculator	s/ log-ta	bles/ data	a-tables ma	iy be spec	ified if r	equire	ed.	
Course	e Outco	omes [B	loom's	Knowle	dge Le	vel (KL	.)] <b>:</b>						
CO1	Abilit	y of stu	dents to	analyze	the bas	ic funda	amentals	s of fluid l	kinematio	es. <b>[K2,</b>	K3, I	K4]	
CO2	Abilit	y of stu	dents to	analyze	the bas	ic funda	amentals	s of fluid o	lynamics	5. <b>[K2, F</b>	K3, K	4]	
CO3	Abilit	y of stu	dents to	derive a	nd anal	yze the	perform	ance of H	lydraulic	Turbine	e. <b>[K</b> 2	2, K3,	K4]
CO4	Abilit	y of stu	dents to	derive a	nd anal	yze the	perform	nance of H	[ydraulic	Pump.	[ <b>K2</b> , ]	K3, K	4]
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	Р	011	PO12
CO1	3	3	3	3	3	1	-	-	-	-		2	3
CO2	3	3	3	3	3	1	-	-	-	-		2	3
CO3	3	3	3	3	3	1	-	-	-	-		2	3
CO4	3	3	3	3	3	1	-	-	-	-		2	3
Course	e Conte	ent											No of lectures
Motior		metry,						cs of Fluic lly Subme			0	•	[10]

_____

Approved by BoS of USAR 15/06/23,

-----



<b>Fluid Kinetics:</b> Lagrangian and Eulerian Methods, Description of Properties, in a Moving Fluid, Local and Convective Acceleration, Streamlines, Path Lines, Streak Lines, Acceleration and Rotation of a Fluid Particle, Vorticity and Circulation, Stream Function, Frictionless and Irrotational Flow, Velocity Potential Function	
<ul> <li>Unit II</li> <li>Fluid Dynamics: Basic Physical Laws of Fluid Mechanics, Equation of Conservation of Mass, Differential Form of Continuity Equation, Frictionless Flow -Bernoulli's Equation, Angular Momentum Theorem, Applications to Flow Measurement.</li> <li>Viscous Flow: Laminar Flow Through a Pipe - Hagen-Poiseulli's Flow, Transition from Laminar to Turbulent Flow, Turbulent Flow Through a Pipe, Friction Factor, Applications to Pipe Networks</li> </ul>	[10]
<b>Unit III</b> <b>Hydraulic Turbines:</b> Principles of Hydraulic Machines, Impulse momentum equation, Euler's equation for energy transfer, Impact of jets. hydropower plant, Classification, head losses and efficiencies, various elements, impulse and reaction turbines, components, selection of design parameters, size calculations, work, efficiency, governing, specific speed, cavitation.	[10]
Unit IV Hydraulic Pumps: classification, selection, installation, centrifugal pumps, head, vane shape, pressure rise, velocity vector diagrams, work, efficiency, design parameters, multi staging, operation in series and parallel, NPSH, specific speed. submersible pumps, axial flow pump Positive Displacement Pumps: Reciprocating pump: Indicator diagram, work, efficiency, effect of acceleration and friction, Air Vessels. Vane displacement pump	[10]
<ul> <li>Text Books:</li> <li>[T1] Fluid Mechanics by Frank. M. White, McGraw Hill Publishing Company Ltd. 2017</li> <li>[T2] Fluid Mechanics and Fluid Power Engineering by Modi and Seth,</li> <li>[T3] Fluid Mechanics and Hydraulic Machines by R.K. Bansal, Laxmi Publications 2018</li> <li>Reference Books:</li> <li>[R1] Fundamentals of Fluid Mechanics by Munson, Wiley India Pvt. Ltd, 7th edition 2015</li> <li>[R2]Introduction to Fluid Mechanics Fox and McDonald's</li> <li>[R3]Fluid Mechanics: Fundamentals and Applications, Yunus A. Cengel, John M. Cimbala, Me Hill Education;4th edition2019</li> </ul>	cGraw

_____

Approved by BoS of USAR 15/06/23, Applicable from Batch admitted in Academic Session 2022-23 Onwards

-----

Approved by AC sub-committee 04/07/23 Onwards Page | 92



Paper c	ode: A	RA 415								L	T/P	С
Subject	: Intro	duction	to Sma	art Mat	terials					4	-	4
	s Conti	nuous E		-	-	•		norms from orms from			·	
INSTR	UCTIO	NS TO	PAPE	R SET	TERS:			Maxim	um Marks	s: As per u	iniversity	v norms
	Questio or short Apart fr should l Each qu The que of the q	n No. 1 answer rom Que nave two restion s estions a uestions	should type qu estion N o questi should b are to be s to be a	be com lestions lo. 1, the ons. Ho be 15 ma framed sked sh	pulsory a . It shoul e rest of owever, s arks. l keeping ould be a	and cover d be of 1: the paper tudents m g in view t at the leve	the entire 5 marks. shall con hay be ask the learnin el of the p	question partial syllabus. sist of four ced to atter ng outcom rescribed to a-tables m	This quest r units as p npt only 1 es of cours rextbooks.	er the sylla question f se/paper. T	abus. Eve rom each 'he standa	ry unit unit.
Course	Outcor	nes: [B	loom's	Knowl	edge Lev	vel (KL)]	:					
CO1:	Abilit	y of stu	dents to	describ	be the fur	ndamenta	ls of smar	rt material	s & structu	res. <b>[K1,</b> ]	K2]	
CO2:		y of stu ations.			tand abo	ut the pie	zoelectric	: & smart p	olymers a	nd utilize t	hem for r	nodern
CO3:		•						and smartons. [K1, ]		eological	& magne	to
CO4:		y of stu ations.			be the fu	ndamenta	ls of fiber	r optics an	d Biomim	etics in va	rious eng	ineering
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	2	2	2	2	-	-	-	3	1	2	3
CO2	3	2	2	2	2	-	-	-	3	1	2	3
CO3	3	2	2	2	3	-	-	-	3	1	3	3
CO4	3	2	2	2	3	-	-	-	3	1	3	3
Course	Conter	nt										No of Lect.
Unit I												[10]

_____

-----

Approved by AC sub-committee 04/07/23

Applicable from Batch admitted in Academic Session 2022-23 Onwards



<b>Introduction:</b> Characteristics of metals, polymers and ceramics. Overview of Smart Materials, Structures and Products Technologies. Classification of smart materials, Components of a smart System, Applications of smart material.	
<ul> <li>Processing of Smart Materials: Semiconductors and their processing, Metals and metallization techniques,</li> <li>Ceramics and their processing, Polymers and their synthesis, UV radiation curing of polymers.</li> <li>Advances in smart structures &amp; materials: Self-Sensing Piezoelectric Transducers, Energy Harvesting</li> <li>Materials, Autophagous Materials, Self- Healing Polymers, Intelligent and Emergent System Design</li> </ul>	
Unit II Piezoelectric Materials: Introduction, Cantilever Piezoelectric actuator model, Properties of Piezoelectric materials, Applications. Magnetic Actuation: Concepts and Principles, Magnetization and Nomenclatures, Fabrication and case studies, Comparison of major sensing and actuation methods. Active Smart Polymer: Polymers in MEMS– Polimide - SU-8 - Liquid Crystal Polymer (LCP) – PDMS – PMMA – Parylene– Fluorocarbon Electro-strictive Materials, Magneto-strictive Materials, Magneto electric Materials	[10]
<ul> <li>Unit III</li> <li>Shape Memory Alloys: Introduction, Phenomenology, Influence of stress on characteristic temperatures, Modelling of shape memory effect. Vibration control through shape memory alloys. Design considerations, multiplexing embedded NiTiNOL actuators.</li> <li>Electro rheological and Magneto rheological Fluids: Mechanisms and Properties, Characteristics, Fluid composition and behaviour, Discovery and Early developments, Summary of material properties. Applications of ER and MR fluids (Clutches, Dampers, others).</li> </ul>	
<ul> <li>Unit IV</li> <li>Fibre Optics: Introduction, Physical Phenomenon, Characteristics, Fibre optic strain sensors, Twisted and Braided Fibre Optic sensors, Optical fibres as load bearing elements, Crack detection applications, Integration of Fibre optic sensors and shape memory elements.</li> <li>Biomimetics: Characteristics of Natural structures. Fibre reinforced: organic matrix natural composites, Natural creamers, Molluscs. Biomimetic sensing, Challenges and opportunities.</li> </ul>	
<ul> <li>Text Books:</li> <li>[T1] Smart Materials and Structures, M.V.Gandhi and B.S.Thompson Chapmen &amp; Hall, London, 19 (ISBN:0412370107)</li> <li>[T2] Smart Structures, Analysis and Design by A V Srinivasan and D M McFarland</li> <li>[T3] Brian Culshaw, Smart Structures and Materials, Artech House, 2000</li> </ul>	992
<b>Reference Books:</b> [R1] Gauenzi, P., Smart Structures, Wiley, 2009 [R2] Cady, W. G., Piezoelectricity, Dover Publication [R3] Shape Memory Materials By Arun D. I., P Chakravarthy	

Approved by BoS of USAR 15/06/23,

-----

_____

Approved by AC sub-committee 04/07/23 Applicable from Batch admitted in Academic Session 2022-23 Onwards Page | 94

_____



Paper c	ode: A	RA 417								L	T/P	C
Subject	: Micro	o-Nano	fabrica	tion pr	ocesses					4	-	4
	s Conti	nuous E		-	-	•			n time to ti time to tin			
INSTR	UCTIO	NS TO	PAPE	R SET	TERS:			Maxim	um Marks	: As per	universit	y norms
> ( > 2 S H > 7 Course	Questio or short Apart fr should h Each qu The que of the qu The requ <b>Outcor</b>	n No. 1 answer om Que nave two estions a uestions uiremen <b>nes: [B</b>	should type question N o questi should b are to be s to be a at of (sc <b>loom's</b>	be com lestions lo. 1, the ons. Ho be 15 ma framed sked sh ientific) <b>Knowle</b>	pulsory a . It shoul e rest of owever, s arks. l keeping ould be a ) calculat edge Lev	and cover d be of 1: the paper tudents m g in view t at the leve cors/ log-t <b>vel (KL)]</b>	the entire 5 marks. shall con hay be ask the learni el of the p ables/ dat	sist of four ced to atter ng outcom rescribed t a-tables m	This quest r units as p npt only 1 es of cours textbooks. ay be spec	er the syl question se/paper. ' ified if re	labus. Eve from each The standa quired	ery unit unit. ard/ level
CO1:	charao	cterizati	on. <b>[K</b> 1	, K2, K	<b>[5</b> ]				nd need of			id its
CO2:	Abili	ity of st	udents	to explo	ore vario	us micro f	fabricatio	ns techniq	ues. <b>[K1, I</b>	K2, K3, I	<b>K4</b> ]	
CO3:		-			-	standing a ses. <b>[K1,</b>			ng, micro f	forming &	& welding	and
CO4:	Abilit	y of stu	dents to	explor	e variou	s nanofab	rication t	echniques.	[K1, K2,	K3, K4]		
CO/PO	PO01	PO02	PO03	PO04	PO05	<b>PO06</b>	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	2	2	3	2	-	-	-	3	1	2	3
CO2	3	2	3	3	2	-	-	-	3	1	2	3
CO3	3	3	3	3	3	-	-	-	3	1	3	3
CO4	3	3	3	3	2	-	-	-	3	1	3	3
Course	Conter	nt	I		1	I	1	1	1		1	No of Lect.
Unit I												[10]

_____

Approved by BoS of USAR 15/06/23,

-----

Approved by AC sub-committee 04/07/23

Applicable from Batch admitted in Academic Session 2022-23 Onwards

Page | 95



<b>Introduction:</b> Miniaturization- need of microfabrication, Micro-nano fabrications- importance & application.	
<b>Micro-Nano Structural Characterization:</b> X-ray diffraction, small angle X-ray Scattering, Optical Microscope and their description, Scanning Electron Microscopy (SEM), Scanning Probe Microscopy (SPM), TEM and EDAX analysis, Scanning Tunneling Microscopy (STM), Atomic force Microscopy	
(AFM).	
Unit II Micro fabrication Techniques: Lithography, Thin Film Deposition and Doping, Etching and Substrate Removal, Substrate Bonding, Silicon oxidation and Crystallography. Micromachining processes: Introduction of micro machining process. Mechanical Micro machining- Ultra Sonic, Abrasive Jet, Water Jet and Abrasive Water Jet micro machining. Chemical and Electro Chemical Micro Machining. Thermal micro machining-Introduction of Beam Energy based micro machining; Electron Beam, Laser Beam, Electric Discharge, Ion Beam, Focused ion Beam and Plasma Beam Micro	
Machining. Hybrid Micro machining processes include Electro Chemical Spark Micro Machining (ECSMM).	[12]
<ul> <li>Unit III</li> <li>Micro forming and welding: Micro Forming; Micro and Nano structured surface development by Nano plastic forming and Roller Imprinting, Micro Extrusion. Micro bending with LASER. LASER micro welding, Electron beam for micro welding.</li> <li>Micro- Nano additive manufacturing: Micro stereolithography, Projection Micro stereolithography, Two-Photon Polymerization, Lithography-based Metal Manufacturing, Electrochemical Deposition, Micro Selective Laser Sintering, Micro-nano ink jetting.</li> </ul>	
Unit IV Nanofabrication Techniques: E-Beam and Nano-Imprint Fabrication, Epitaxy and Strain Engineering, Scanned Probe Techniques, Self-Assembly and Template Manufacturing. Carbon nano-tube production and applications, Carbon based nanostructures. Application of Micro-Nano fabrications.	[8]
<ul> <li>Text Books:</li> <li>[T1] Jain V.K., Introduction to Micro machining, Narosa Publishing House.</li> <li>[T2] Jain V. K., Micro Manufacturing Processes, CRC Press, Taylor &amp; Francis Group.</li> <li>[T3] Norio Taniguchi, Nano Technology, Oxford University Press, New York.</li> <li>[T4] Marc Madou, Fundamentals of Microfabrication: The Science of Miniaturization, CRC Press, Second Edition.</li> <li>[T5] Mark James Jackson, Microfabrication and Nanomanufacturing, CRC Press, 2005.</li> </ul>	2002,

_____ _____

Approved by BoS of USAR 15/06/23,

_____



# **Reference Books:**

[R1] Bharat Bhushan, Handbook of nanotechnology, springer, Germany.

[R2] Jain V.K., Advanced Machining Processes, Allied Publishers, Delhi.

[R3] Mcgeoug.J.A., Micromachining of Engineering Materials, CRC press.

[R4] Tai-Ran Hsu, MEMS and Microsystems: Design and Manufacture, McGraw-Hill, 2008

[R5] Gabor L. Hornyak, H.F Tibbals, Joydeep Dutta & John J Moore, Introduction to Nanoscience and

Nanotechnology, CRC Press, 2009.

Approved by BoS of USAR 15/06/23, Approved by AC sub-committee 04/07/23

Applicable from Batch admitted in Academic Session 2022-23 Onwards



Paper c	ode: A	RA 419	)								L	T/P	С
Subject	: Field	and Se	rvice R	obotics							4	0	4
Marki	ng Scho	eme:											
Teache	rs Cont	inuous	Evaluat	ion: As p	per univ	ersity ex	aminatio	n norms	from tin	ne to tin	ne.		
End Te	rm The	ory Exa	aminatio	on: As pe	er unive	rsity exa	mination	norms fr	rom time	to time	÷.		
INSTR	UCTI	ONS TO	O PAPI	ER SET	TERS:		Ma	aximum	Marks:	As per	univ	ersity	norms
A A A A	Question short are Apart for should I Each que The que of the que The req	on No. 1 nswer typ rom Que have two uestion s estions a uestions uiremen	should be pe question Not po question hould be re to be to be as t of (scie	be computions. It shows it is the constant of	lsory and ould be est of the ever, stue s. eeping ir ld be at t	d cover the of 15 mars paper she dents may n view the the level of s/ log-tab	all consist y be asked e learning of the pres les/ data-t	/llabus. T t of four u to attemp outcomes cribed tex	his questi nits as pe pt only 1 of course atbooks.	er the syl question e/paper.	labus from The s	e. Every each u tandar	y unit ınit.
		-			-		field and	service	robot []	(1 K)			
CO1	Deser		appnear		current					<b>XI, IX</b> 2]			
CO2	Identi: [ <b>K1, I</b>	•	ulate a	nd solve	algorith	ım relate	d to local	ization,	obstacle	avoidar	ice, a	nd ma	pping.
CO3				obot for robots.			ts for rob	ot interac	ction wit	h huma	n, bet	tween	
CO4	Imple	ment pa	th plan	ning algo	orithms	inside a	field/serv	rice robo	t for nav	igation.	[K4]		
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	Р	011	PO12
CO1	3	3	3	3	3	-	-	-	1	3		1	2
CO2	3	2	3	3	2	-	-	-	2	3		2	2
CO3	3	3	3	2	2	-	-	-	2	2	1	2	3
CO4	3	3	3	3	3	-	-	-	3	3	1	2	3
Course	e Conte	ent			•						•		No of lectures

_____

Approved by BoS of USAR 15/06/23, Applicable from Batch admitted in Academic Session 2022-23 Onwards

-----

Approved by AC sub-committee 04/07/23 Inwards Page | 98



Unit I History of service robotics: Present status and future trends, Need for service robots, applications, examples and Specifications of service and field Robots. Non-conventional Industrial robots. Robot Kinematics: Kinematic Models and Constraints, Manoeuvrability, Workspace, Control.	[10]
Unit II Localization: Introduction - Bayes filter – Kalman Filter – Extended Kalman Filter - Information Filter - Histogram Filter - Particle Filter – Challenges of Localization- Map Representation- Probabilistic Map based Localization-Monte-carlo localization Landmark based navigation- Globally unique localization Positioning beacon systems- Route based localization. Mapping: Metrical maps - Grid maps - Sector maps – Hybrid Maps – SLAM.	[10]
Unit III Planning And Navigation Introduction: Path planning overview- Global path planning – A* Algorithm - local path planning - Road map path planning- Cell decomposition path planning-Potential field path planning- Obstacle avoidance – Path control.	[10]
<ul> <li>Unit IV Humanoids</li> <li>Wheeled and legged, Legged locomotion and balance, Arm movement, Gaze and auditory orientation control, Facial expression, Hands and manipulation, Sound and speech generation, Motion capture/Learning from demonstration, Human activity recognition using vision, touch, sound, Vision, Tactile Sensing, Models of emotion and motivation. Performance, Interaction, Safety and robustness, Applications.</li> </ul>	[10]
<ul> <li>Text Books:</li> <li>[T1] Roland Siegwart, Illah Reza Nourbakhsh, Davide Scaramuzza, "Introduction to Autonomo Mobile Robots", Bradford Company Scituate, USA, 2011.</li> <li>[T2] Riadh Siaer, "The future of Humanoid Robots- Research and applications", Intech Publica 2012.</li> </ul>	
<ul> <li>Reference Books:</li> <li>[R1] Sebastian Thrun, Wolfram Burgard, Dieter Fox, "ProbabilisticRobotics", MIT Press, 2005</li> <li>[R2] Karsten Berns, Ewald Von Puttkamer, "AutonomousLand VehiclesSteps towards Service Robots", Vieweg Teubner Springer, 2009.</li> <li>[R3] Howie Choset, Kevin LynchSeth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki, a Sebastian Thrun, "Principles of Robot Motion-Theory, Algorithms, and Implementation", MIT Press, 2005.</li> <li>[R4] Bruno Siciliano, Oussama Khatib, Springer Hand book of Robotics, Springer, 2008.</li> </ul>	and

_____ -----

Approved by BoS of USAR 15/06/23,



Paper c	ode: A	RA 421	L							]	T/P	С
Subject	: Gree	n Logis	tics								4 0	4
Marki	ng Scho	eme:										
Teache	rs Cont	inuous	Evaluat	ion: As p	per univ	ersity e	xaminat	ion norm	s from tir	ne to time		
End Te	rm The	ory Exa	aminatio	on: As pe	er unive	rsity ex	aminatio	on norms	from time	e to time.		
INSTR	UCTI	ONS T	O PAPI	ER SET	TERS:		N	Aaximun	n Marks:	As per u	niversit	y norms
$\blacktriangleright$	There should be 9 questions in the end term examination question paper.											
$\checkmark$	Question No. 1 should be compulsory and cover the entire syllabus. This question should have object											ective or
	short answer type questions. It should be of 15 marks.											•
$\checkmark$	Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every should have two questions. However, students may be asked to attempt only 1 question from each u											•
			-				ty DC ask		npt only 1	question	ioni caen	unnt.
	Each question should be 15 marks. The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level											
	of the questions to be asked should be at the level of the prescribed textbooks.											
$\blacktriangleright$	The req	uiremen	t of (scie	entific) ca	lculator	s/ log-tal	bles/ data	a-tables ma	ay be spec	ified if req	uired.	
Course	e Outco	mes [B	loom's	Knowle	dge Le	vel (KL	.)] <b>:</b>					
~ ~ ~	Ability	of stud	ents to u	nderstand	l the stra	tegic im	portance	of good s	upply chai	n design, p	lanning a	and
CO1	Ability of students to understand the strategic importance of good supply chain design, planning and operation for industry. <b>[K1, K2]</b>											
CO2	Ability	of stud	ents to a	nalyze the	e perfori	nance of	f the supp	oly chain.	[K2, K3, I	K4]		
CO3	Abilit	y of stu	dents to	design a	ind anal	yze the	effectiv	e networ	k for the s	supply cha	in. <b>[K2,</b>	K3, K4
CO4	Abilit	y of stu	dents to	understa	and the	importa	nce of c	oordinati	on in sup	ply chain.	[K1, K2	2]
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	2	2	2	2	2	2	-	-	1	-	2	3
CO2	3	3	3	3	3	2	-	-	1	-	2	3
CO3	3	3	3	3	3	2	-	-	1	-	2	3
CO4	3	2	2	2	3	2	-	-	1	-	2	3
Course	e Conte	ent										No of lectures
Unit I Introd Unders		supply	/ Chain,	, Supply	Chain F	Perform	ance; Su	pply Cha	in Driver	s and Obs	tacles.	[10]

_____

Approved by BoS of USAR 15/06/23, Applicable from Batch admitted in Academic Session 2022-23 Onwards

-----

Approved by AC sub-committee 04/07/23 Dowards Page | 100



<ul> <li>Planning Demand and Supply in a Supply chain</li> <li>Demand Forecasting in Supply Chain, Aggregate Planning in Supply Chain, Planning Supply and</li> <li>Demand; Managing Predictable Variability, Economic Order Quantity Models, Reorder Point</li> <li>Models, Multi-Echelon Inventory Systems. Managing Uncertainty in a Supply Chain, Determining</li> <li>Optimal Levels of Product Availability.</li> <li>Supply Chain Performance</li> </ul>	
Supply Chain Strategies, Achieving Strategic Fit, Product Life Cycle, The Minimize Local Cost View, The Minimize Functional Cost View, The Maximize Company Profit View, The Maximize Supply Chain Surplus View.	
Unit II	
<ul> <li>Sourcing Decisions in Supply Chains</li> <li>Role of Sourcing in Supply Chains, Supplier Assessment, Design Collaboration, Sourcing Planning and Analysis, Market Sourcing Decisions in Practice.</li> <li>Network Design</li> <li>Factors Influencing Distribution in Network Design, Distribution Networks in Practice, Framework for Network Design Decisions, Models for Facility location and Capacity Allocation, Making Network Design Decisions in Practice. Global Supply Chain Networks.</li> </ul>	[10]
<ul> <li>Unit III</li> <li>Transportation in a Supply Chain</li> <li>Facilities Affecting Transportation Decisions, Modes of Transportation and their Performance Characteristics, Design Options for A Transport Network, Trade-offs in Transportation Decisions, Tailored Transportation, Routing and Scheduling in Transportation, Making Transportation Decisions in Practice.</li> <li>Coordination in a Supply Chain</li> <li>Lack of Supply Chain Coordination and The Bullwhip Effect, Effect of Lack of Coordination on Performance, Obstacles to Coordination, Managerial Levers to Achieve Coordination, Achieving Coordination in Practice. Information Technology and its use in Supply Chain.</li> </ul>	[10]
	[10]
Sustainable/Green Supply Chain Understanding Sustainability, Misconceptions, Reasons for pursuing Sustainability, Sustainable Manufacturing, SCM Challenges, SCM & Environment, Green SCM, Why Green, Concept and Definitions, GSCM, Implementation of Green SCM, Enablers barriers and benefits.	
<ul> <li>Text Books:         <ul> <li>[T1] Supply Chain Management–Strategy, Planning and Operation, Sunil Chopra and Peter Me Pearson/PHI,3rdEdition.</li> <li>[T2] Designing and Managing the Supply Chain: Concepts, Strategies, and Case Studies, Levi E Kaminsky P. and Levi E.S., McGraw Hill Inc. New York.</li> </ul> </li> <li>Reference Books:         <ul> <li>[R1] Marketing logistics: A Supply Chain Approach, Kapoor K K, Kansal Purva, Pearson Educ Asia.</li> <li>[R2] Logistics and Supply Chain Management, Christopher Martin, Pearson Education Asia.</li> </ul> </li> </ul>	D.S.,

Approved by BoS of USAR 15/06/23, Applicable from Batch admitted in Academic Session 2022-23 Onwards

_____

Approved by AC sub-committee 04/07/23 nwards Page | 101



Paper c	ode: A	RA 423	3							L	T/P	С
Subject	: Desig	n for A	dditive	e manufa	cturing	5				4	0	4
Marki	ng Scho	eme:										
Teache	rs Cont	inuous	Evaluat	tion: As p	per univ	ersity exa	mination	norms fi	rom time	e to time.		
End Term Theory Examination: As per university examination norms from time to time.												
INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: As per university no											y norms	
$\checkmark$	➤ There should be 9 questions in the end term examination question paper.											
$\succ$	Question 1 (e) 1 should be comparison y and cover and chine symmetry and the should have conjectly										ective or	
	short answer type questions. It should be of 15 marks.											
A												
	should have two questions. However, students may be asked to attempt only 1 question from each unit.											
	Each question should be 15 marks. The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level											
										paper. In	e standa	
$\checkmark$	<ul> <li>of the questions to be asked should be at the level of the prescribed textbooks.</li> <li>➤ The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required.</li> </ul>											
	-					el (KL)]:			I	1		
CO1	Abilit	y of stu	dents to	identify	the nee	d of desig	n for addi	tive ma	nufacturi	ing. <b>[K1,</b>	K2]	
CO2				develop M proce		structures K2,K3]	using top	ology oj	otimizati	on and a	nd choo	se a
CO3	Identi	fy desig	n const	raints an	d choos	e a polym	er and me	tal AM	process	[K2,K3]		
		•			0	r additive	manufact	uring gu	idelines	in desig	ning ma	SS
CO4	custor	nized p	roducts	[K3, K4	]			r				1
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	3	3	3	2	1	-	1	3	1	2
CO2	3	3	3	3	3	1	1	-	2	3	1	2
CO3	3	3	3	3	3	1	1	-	3	3	2	3
CO4	3	3	3	3	3	3	2	-	3	3	2	3
Course	e Conte	ent		-	-	-	•	•				No of lectures

Approved by BoS of USAR 15/06/23,

-----



# Unit I

<ul> <li>Introduction to Design for Additive Manufacturing (DfAM):</li> <li>Introduction to geometric modelling, Modelling of Synthetic curves like Hermite, Bezier and B-spline, Parametric representation of freeform surfaces, Design freedom with AM, Need for Design for Additive Manufacturing (DfAM), CAD tools vs. DfAM tools, Requirements of DfAM methods, General Guidelines for DfAM, The Economics of Additive Manufacturing, Design to Minimize Print Time, Design to Minimize Post-processing.</li> <li>Design Guidelines for Part Consolidation:</li> <li>Design for Function, Material Considerations, Number of Fasteners, Knowledge of Conventional DFM/DFA, Assembly Considerations, Moving Parts, Part redesign, Opportunities for part consolidation</li> </ul>	[10]
<ul> <li>Unit II</li> <li>Design for Improved Functionality: Multi scale design for Additive manufacturing, Mass customization, Biomimetics, Generative design, Design of multi-materials and functionally graded materials.</li> <li>Design for Minimal Material Usage: Topology Optimization, Modelling of Design space, defining design and manufacturing constraints, performing analysis for weight reduction, maximize stiffness, minimize displacement, Post-processing and Interpreting Results, Applications of TO, TO tools, Design of cellular and lattice structures, Design of support structures.</li> </ul>	[10]
<ul> <li>Unit III</li> <li>Computational Tools for Design Analysis: Considerations for Analysis of AM Parts, Material Data, Surface Finish, Geometry, Simplifying Geometry, Mesh-Based Versus Parametric Models, Build Process Simulation: Model Slicing, Contour Data Organization, Layer-by-Layer Simulation, Hatching Strategies, Scan Pattern Simulation and Tool Path Generation</li> <li>Design for Polymer AM: Anisotropy, Wall Thicknesses, Overhangs, Support Material, Accuracy, Tolerances, Layer Thickness, Resolution, Print Orientation, Warpage, over sintering, Hollowing Parts, Horizontal Bridges, Connections, Fill Style, holes, fillets, ribs, font sizes and small details.</li> </ul>	[10]
Unit IV Design for Metal AM: Powder Morphology, Powder Size Distribution, Material Characteristics, Designing to Minimize Stress concentrations, Residual Stress, Overhangs, shrinkage, warpage and Support Material, Design Guidelines for Wall Thickness, Clearance Between Moving Parts, Vertical Slots, Circular Holes, fillets, channels, vertical Bosses, circular pins, External Screw Threads and part positioning. Other AM Considerations: Designer Machine Operator Cooperation, Health and Safety, Material Exposure, Gas Monitoring, Gas Exhaust, Material Handling, Risk of Explosion, AM Part Standardization and Certification.	[10]
<b>Text Books:</b> [T1] A Practical Guide to Design for Additive Manufacturing, Diegel, Olaf, Axel Nordin, and Damien Motte, Springer, 2020. [T2] The 3D Printing Handbook: Technologies, Design and Applications, Redwood, Ben, Filen	non

Approved by BoS of USAR 15/06/23, Applicable from Batch admitted in Academic Session 2022-23 Onwards

___

Approved by AC sub-committee 04/07/23 wards Page | 103



Schoffer, and Brian Garret, 3D Hubs, 2017.

# **Reference Books:**

- [R1] Design for Advanced Manufacturing: Technologies and Process, McGrawHill, 2017.
- [R2] 2. Additive Manufacturing Technologies, Gibson, Ian, David W. Rose Mahyar Khorasani, Springer, 2021.
- [R3] Laser-Induced Materials and Processes for Rapid Prototyping, L.Lu, Wong, Springer, 2001.
- [R4] Rapid Prototyping: Laser-based and Other Technologies, Patri K. V Ma, Springer, 2004.
- [R5] Mathematical Elements for Computer Graphics, David F. Rogers, J. A
- [R6] Geometric Modeling, Michael E.Mortenson, Tata McGrawHill, 2013

_____

Approved by BoS of USAR 15/06/23, Approved Applicable from Batch admitted in Academic Session 2022-23 Onwards

Approved by AC sub-committee 04/07/23 Onwards Page | 104



Paper c	ode: A	RA 425	5							]	L	T/P	С
Subject	: Imag	e proce	ssing a	nd Robo	ot visior	ı					4	0	4
Marki	-												
				-		•		n norms :			e.		
	End Term Theory Examination: As per university examination norms from time to time.												
INSTR	INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: As per university no											norms	
	I												
	<b>C</b>										ctive or		
	short answer type questions. It should be of 15 marks.												
	Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, students may be asked to attempt only 1 question from each unit.												
	Each question should be 15 marks.												
	of the questions to be asked should be at the level of the prescribed textbooks.												
	-	•						ables may	be specif	ied if req	uire	d.	
Course	Outco	mes[Bl	loom's	Knowled	lge Lev	el (KL)]	:						
<b>CO1</b>		•		-				bot along		grippers	. Fu	rtherr	nore to
CO1								on <b>.[K1, H</b>					
CO2	Abilit	y of stu	dents to	utilize tl	he diffe	rential m	otion and	d velociti	es of rob	ot using	jaco	bian.	[K3]
				use the	dynami	c analysis	s of force	es using I	Lagrangia	an and N	ewt	onian	
CO3		od. <b>[K2,</b>											
CO4	Abilit	y of stu	dents to	implem	ent the o	online an	d offline	program	ming of	robots. [	K4]		
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	Р	011	PO12
CO1	3	3	3	3	3	2	1	-	1	3		1	2
CO2	3	3	2	3	3	1	1	-	2	3		1	2
CO3	3	3	2	2	3	1	1	-	3	3		2	3
CO4	3	3	3	3	3	3	2	-	3	3		2	3
Course	e Conte	ent			-						•		No of lectures

Approved by BoS of USAR 15/06/23,

-----



<b>Unit I</b> <b>Introduction &amp; Digital Image Fundamentals:</b> Fundamentals Steps in Digital Image Processing, Components of Digital Image Processing Systems, Applications of Digital Image Processing, Image Sampling and Quantization, Some basic relationships like Neighborhood, Connectivity, Distance Measures between pixels, Linear and Non Linear Operations, stereo imaging and camera calibration.	[10]
Unit II Vision systems and Algorithms	
Basic Components: Elements of visual perception, Lenses: Pinhole cameras, Gaussian Optics – Cameras – CameraComputer interfaces	
<b>Fundamental Data Structures:</b> Images, Regions, Sub-pixel Precise Contours – Image Enhancement: Gray value transformations, image smoothing, Fourier Transform – Geometric Transformation - Image segmentation – Segmentation of contours, lines, circles and ellipses – Camera calibration – Stereo Reconstruction.	[10]
Unit III Object recognition	
Object recognition, Approaches to Object Recognition, Recognition by combination of views objects with sharp edges, using two views only, using a single view, use of depth values.	[10]
<b>Unit IV</b> <b>Vision tracking</b> Transforming sensor reading, Mapping Sonar Data, aligning laser scan measurements - Vision and Tracking: Following the road, Iconic image processing, Multiscale image processing, Video Tracking - Learning landmarks: Landmark spatiograms, K-means Clustering, EM Clustering.	[10]
<b>Text Books:</b> [T1] Carsten Steger, Markus Ulrich, Christian Wiedemann, —Machine Vision Algorithms and Applications ^{II} , WILEYVCH, Weinheim,2008.	
[T2] Damian m Lyons,—Cluster Computing for Robotics and Computer Vision, World Scientific, Siz 2011.	ngapore,
[T3] Rafael C. Gonzalez and Richard E.woods, —Digital Image Processing, Addition – Wesle Publishing Company, New Delhi, 2007.	ey
<ul> <li>Reference Books:</li> <li>[R1] Shimon Ullman, —High-Level Vision: Object recognition and Visual Cognition, A Brad Book, USA, 2000.</li> <li>[R2] R.Patrick Goebel, — ROS by Example: A Do-It-Yourself Guide to Robot Operating Syster Volume II, A Pi Robot Production, 2012.</li> </ul>	

Approved by BoS of USAR 15/06/23,Approved by AC sub-committee 04/07/23Applicable from Batch admitted in Academic Session 2022-23 OnwardsPage | 106

----



Paper code: ARA 427											T/P	С
Subject	t: Robo	t Opera	ating S	ystems						4	0	4
Marki	ng Sch	eme:									•	
Teachers Continuous Evaluation: As per university examination norms from time to time.												
End Term Theory Examination: As per university examination norms from time to time.												
INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: As per university											norms	
A	There should be y questions in the one term enablished question puper.											
$\blacktriangleright$	Question No. 1 should be compulsory and cover the entire syllabus. This question should have object										ctive or	
	short answer type questions. It should be of 15 marks.											
A	Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every u											
	should have two questions. However, students may be asked to attempt only 1 question from each unit											nit.
	Each question should be 15 marks.											
A	1											/ level
r.	of the questions to be asked should be at the level of the prescribed textbooks.											
> The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required.												
Course Outcomes[Bloom's Knowledge Level (KL)]:												
CO1	Descr	ibe the	need for	r ROS an	d its sig	nificance	e.[K1]					
CO2	Sumn	narize th	ne Linux	k comma	nds used	l in robo	tics. <b>[K1</b>	, K2]				
CO3	Analy	ze the i	ssues in	hardwar	e interfa	cing. <b>[K</b>	[3]					
CO4	Discu	ss abou	t the app	plication	s of ROS	5. [ <b>K3,K</b>	[4]					
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	2	3	3	-	-	-	3	3	1	2
CO2	3	2	3	2	3	-	-	-	3	3	2	2
CO3	2	3	3	2	2	-	-	-	3	2	2	3
CO4	2	3	2	3	3	-	-	-	3	3	2	3
Course	Course Content											No of lectures
Unit I Introdu	Unit I Introduction to ROS:											[10]

------

Approved by BoS of USAR 15/06/23,

Approved by AC sub-committee 04/07/23

Applicable from Batch admitted in Academic Session 2022-23 Onwards



Introduction – The ROS Equation - History - distributions -difference from other meta-operating systems– services - ROS framework – operating system – releases. Unit II **Introduction to Linux Commands** UNIX commands - file system - redirection of input and output - File system security - Changing access rights – process commands – compiling, building and running commands – handling [10] variables. **Architecture of Operating System** File system - packages - stacks - messages - services - catkin workspace - working with catkin workspace – working with ROS navigation and listing commands. Unit III **Computation Graph Level** Navigation through file system -Understanding of Nodes - topics - services - messages - bags -[10] master -- parameter server. **Debugging and Visualization** Debugging of Nodes - topics - services - messages - bags - master - parameter - visualization using Gazebo- Rviz - URDF modeling - Xacro - launch files. Hardware Interface: Sensor Interfacing – Sensor Drivers for ROS – Actuator Interfacing – Motor Drivers for ROS. Unit IV [10] **Case Studies: Using ROS In Real World Applications** Navigation stack-creating transforms -odometer - imu - laser scan - base controller - robot configuration - cost map - base local planner - global planner - localization - sending goals -TurtleBot – the low cost mobile robot. Text Books: [T1] Lentin Joseph, "Robot Operating Systems (ROS) for Absolute Beginners, Apress, 2018. [T2] Aaron Martinez, Enrique Fernández, "Learning ROS for Robotics Programming", Packt Publishing Ltd, 2013. **Reference Books:** [R1] Jason M O'Kane, "A Gentle Introduction to ROS", CreateSpace, 2013 [R2] AnisKoubaa, "Robot Operating System (ROS) – The Complete Reference (Vol.3), Springer, 2018. [R3] Kumar Bipin, "Robot Operating System Cookbook", Packt Publishing, 2018. [R4] Wyatt Newman, "A Systematic Approach to learning Robot Programming with ROS", CRC Press, 2017. [R5] Patrick Gabriel, "ROS by Example: A do it yourself guide to Robot Operating System", Lulu, 2012.

Approved by BoS of USAR 15/06/23,



# DETAILED SYLLABUS FOR OPEN AREA ELECTIVE AIDS/AIML/IIOT/AR



	Code: A	RO 371								L	T/P	Credits
Subject	: 3D-Pr	inting T	echnolog	gies						3	0	3
Teacher		uous Eva		-		•						
		ry Exami		-								
		NS TO F						_	Jniversi	ty norm	S	
	Question	ould be 9 No. 1 sho pe questi	ould be co				•	• •	question	should ha	we objecti	ve or shor
	-								-	•	-	init should
	The quest	questions tions are t to be ask	o be fran	ned keepi	ng in vie	w the lear	rning out	comes of				level of the
	The requi	rement of	f (scientif	ïc) calcu	lators/ log	g-tables/	data-table	es may be	specified	l if requir	ed	
1				v about c	Allusion	i, sneet-i	aminatio	n and po	wder-ba	sed AM	processe	s. <b>[K1,</b>
<b>CO4:</b> A	K2, K3,	K4]									processe , K2, K3 PO11	
СО4: А СО/РО	<b>K2, K3,</b> bility of	K4] students	to deve	lop unde	erstandin	g about	the meta	l base Al	M proces	sses. [ <b>K</b> 1	l, K2, K3	9, K4]
CO4: A CO/PO CO1	<b>K2, K3,</b> bility of <b>PO01</b>	K4] students PO02	to deve	lop unde PO04	erstandin PO05	g about	the meta	l base Al	M proces PO09	sses. [K1 PO10	, K2, K3 PO11	9, K4] PO12
CO4: A CO/PO CO1 CO2	<b>K2, K3,</b> bility of <b>PO01</b>	K4]         students         PO02         2	to deve <b>PO03</b> 2	lop unde <b>PO04</b> 3	PO05	g about	the meta	l base Al	M proces <b>PO09</b> 3	sses. [K1 PO10	<b>PO11</b> 2	<b>PO12</b> 3
CO4: A CO/PO CO1 CO2 CO3	<b>K2, K3</b> , bility of <b>PO01</b>	K4]           students           PO02           2           2	PO03         2         3           3         3         3	PO04 3 3	PO05 2 2 2	g about	the meta	l base Al	M proces <b>PO09</b> 3 3	sses. [ <b>K</b> 1 <b>PO10</b> 1 1	<b>PO11</b> 2 2 2	<b>PO12</b> 3 3
CO4: A CO/PO CO1 CO2 CO3 CO4	<b>K2, K3,</b> bility of <b>PO01</b> 3 3 3 3	K4]         students         PO02         2         2         3	PO03         2         3         3         3	PO04         3           3         3           3         3	PO05 2 2 2 3	g about	the meta	l base Al	M proces <b>PO09</b> 3 3 3	FO10           1           1           1	<b>PO11</b> 2 2 3	<b>PO12</b> 3 3 3 3

_____



<b>Unit II</b> Vat Photopolymerization AM Processes: Stereolithography (SL), Materials, Process Modeling, SL resin curing process, Mask Projection Processes, Two-Photon vat photopolymerization. Case studies Material Jetting AM Process: Material Jetting Process, Materials, Process Benefits and Drawbacks, Applications of Material Jetting Processes. Case studies.	[9]
<ul> <li>Unit III</li> <li>Extrusion-Based AM Processes: Fused Deposition Modelling (FDM), Principles, Materials, Process Modelling, Plotting and path control, Bio-Extrusion, Contour Crafting. Case studies</li> <li>Sheet Lamination AM Processes: Bonding Mechanisms, Materials, Laminated Object</li> <li>Manufacturing (LOM), Ultrasonic Consolidation (UC), Gluing, Thermal bonding, LOM and UC applications, case studies.</li> <li>Powder Bed Fusion AM Processes: Selective laser Sintering (SLS), Powder fusion mechanism and powder handling, SLS Metal and ceramic part creation, Electron Beam melting(EBM). Case studies.</li> </ul>	[9]
Unit IV Directed Energy Deposition AM Processes: Process Description, Material Delivery, Laser Engineered Net Shaping (LENS), Direct Metal Deposition (DMD), Electron Beam Based Metal Deposition Additive friction stir deposition process: principle, parameters, applications, functionally graded additive manufacturing components, Case studies. Wire Laser/Arc Additive Manufacturing: Process, parameters, applications, advantages and disadvantages, case studies.	[9]
<ul> <li>Text Books:</li> <li>[T1] Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, Ian Gibson, David W Rosen, Brent Stucker, Springer, 2015, 2nd Edition.</li> <li>[T2] 3D Printing and Additive Manufacturing: Principles &amp; Applications, Chua Chee Kai, Leong Ka World Scientific, 2015, 4th Edition.</li> <li>[T3] Additive Manufacturing, Second Edition, Amit Bandyopadhyay Susmita Bose, CRC Press Tayl &amp; amp; Francis Group, 2020.</li> <li>[T4] Additive Manufacturing: Principles, Technologies and Applications, C.P Paul, A.N Junoop, McGrawHill, 2021</li> </ul>	
<ul> <li>Reference Books:</li> <li>[R1] Rapid Prototyping: Laser-based and Other Technologies, Patri K. Venuvinod and Weiyin Ma, S 2004.</li> <li>[R1] Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Too D.T. Pham, S.S. Dimov, Springer 2001.</li> <li>[R1] Design for Advanced Manufacturing: Technologies and Process, Laroux K, Gillespie, McGraw 2017.</li> <li>[R1] Additive Manufacturing Technologies, Gibson, Ian, David W. Rosen, Brent Stucker, and Mahy Khorasani, Springer, 2021.</li> </ul>	oling, vHill,



Paper Code: ARO 373										L	T/P	Credits
Subject	: Mobile	Applic	ation De	velopme	ent					3	0	3
Marking Scheme:											1	
				-	-			orms from				
End Terr	m Theor	y Exami	nation: A	As per un	niversity	examina	tion nor	ms from	time to t	ime.		
NSTRU	UCTION	NS TO P	APER S	SETTEF	RS: Max	imum M	farks : A	As per U	Iniversit	y norms	6	
≻ T	There sho	uld be 9 d	questions	in the end	d term ex	amination	n questio	n paper				
		No. 1 sho pe questio		mpulsory	and cove	er the ent	ire syllab	ous. This c	question s	hould ha	ve objecti	ve or shor
				the rest of	f the pape	er shall co	onsist of f	four units	as per the	e syllabus	s. Every u	nit should
		-			-		-	only 1 qu				
	•			-	C		U			per. The	standard/	level of
	•					•		textbooks		if no quinc	d	
	_				ators/ log	-tables/ u	ata-table	s may be	specified	ii iequite	a	
CO1: A	bility of bility of	students f studen	to under ts to Ide	rstand an entify va	rious co	DK. [ <b>K1</b> ,		le progra	amming	that ma	ke it uni	ique fron
CO1: Al CO2: A program CO3: A nterface	bility of bility of ming for bility of es. [ <b>K2,</b> ]	students f studen r other pl students <b>K3, K4]</b>	to under ts to Ide atforms. s to utili	rstand an entify va [ <b>K1, K</b> 2 ze rapid	droid SI rious cc 2, K3] prototy	OK. [ <b>K1</b> , oncepts of	of mobil	to design	n and de	velop so	phisticat	ed mobil
CO1: Al CO2: A program CO3: A nterface	bility of bility of ming for bility of es. [ <b>K2</b> , ] bility of	students f studen other pl students <b>K3, K4]</b> students	to under ts to Ide atforms. s to utili	rstand an entify va [ <b>K1, K</b> 2 ze rapid by applica	droid SI rious cc 2, K3] prototy	DK. [ <b>K1</b> , oncepts of oing tech the And	of mobil	to design	n and de	velop so		ed mobile
CO1: Al CO2: A program CO3: A nterface CO4: Al	bility of bility of ming for bility of es. [ <b>K2</b> , ] bility of	students f studen other pl students <b>K3, K4]</b> students	to under ts to Ide atforms. s to utili to deplo	rstand an entify va [ <b>K1, K</b> 2 ze rapid by applica	droid SI rious cc 2, K3] prototyp ations to	DK. [ <b>K1</b> , oncepts of oing tech the And	of mobil	to design rketplace	n and de	velop so ribution.	phisticat [ <b>K2, K3</b>	ed mobile 6, K4] PO12
CO1: Al CO2: A program CO3: A nterface CO4: Al CO/PO	bility of bility of ming for bility of es. [ <b>K2</b> , 1 bility of <b>PO01</b>	students f student r other pl students <b>K3, K4]</b> students <b>PO02</b>	to under ts to Ide atforms. s to utili to deplo <b>PO03</b>	rstand an entify va [K1, K2 ze rapid by applic. PO04	droid SI rious cc 2, K3] prototyp ations to PO05	DK. [ <b>K1</b> , oncepts of oing tech the And	of mobil	to design rketplace	n and de	velop so ribution.	phisticat [ <b>K2, K3</b>	ed mobile <b>6, K4]</b> <b>PO12</b>
CO1: Al CO2: A program CO3: A nterface CO4: Al CO/PO CO1	bility of bility of bility of bility of es. [ <b>K2</b> , ] bility of <b>PO01</b> 3	students f student r other pl students <b>K3, K4]</b> students <b>PO02</b> 3	to under ts to Ide atforms. s to utili to deplo <b>PO03</b> 3	rstand an entify va [ <b>K1, K</b> 2 ze rapid by applica <b>PO04</b> 2	adroid SI rious cc 2, K3] prototyp ations to PO05 2	DK. [K1, oncepts of the And PO06	of mobil	to design rketplace	for distr PO09	velop so ribution.	phisticat [ <b>K2, K3</b> <b>PO11</b> 1	PO12
CO1: Al CO2: A program CO3: A nterface CO4: Al CO/PO CO1 CO2	bility of bility of ming for bility of es. [ <b>K2</b> , 1 bility of <b>PO01</b> 3 3	students f students r other pl students <b>K3, K4]</b> students <b>PO02</b> 3 3	to under ts to Ide atforms. s to utili to deplo <b>PO03</b> 3 2	rstand an entify va [K1, K2 ze rapid by applic. PO04 2 3	droid SI rious cc 2, K3] prototyp ations to PO05 2 3 3	DK. [K1, oncepts of the And PO06	of mobil	to design rketplace	and determined of the formation of the f	velop so ribution. PO10 1	phisticate [ <b>K2, K3</b> <b>PO11</b> 1 2	ed mobile <b>6, K4]</b> <b>PO12</b>

Introduction to mobile phone generations – 1G to 5G, Smart phone architecture-ARM and Intel architectures, Power Management, Screen resolution, Touch interfaces, Memory-Sensors, I/O interfaces, GPS, Application deployment. Mobile OS Architectures-Kernel structure-Comparing and Contrasting architectures of Android, iOS and Windows, Darwin vs. Linux vs. Windows, Runtime (Objective-C vs. Dalvik vs. WinRT), Approaches to power management and Security.

[8]



Unit II Mobile Application Architectures: Client-Server-Connection Types-Synchronization-Architectural Patterns-Architectural Design Tenets. Mobile Infrastructure: Mobile Device Types-Mobile Device Components-Connection Methods. Mobile Client Applications: Thin Client-Fat Client-Web Page Hosting-Best Practices, Issues-Existing Web Architectures and Back-End Systems Security Issues.	[10]				
<b>Unit III</b> <b>Internet Programming: IP:</b> Packet Format, Addressing, Addressing Class, Routing, ProtocolsNetwork: ARP, ICMP, DHCP, and Transport: TCP, UDP. IPv6, Wireless IP, FTP, SNMP, SMTP. Domain: DNS, DDNS, NIS, LDAP. Graphics and animation – Custom views – canvas - animation APIs - multimedia – audio/video	[10]				
playback and record - location awareness, and native hardware access (sensors such as accelerometer and gyroscope).					
Unit IV Testing Mobile Apps and Taking Apps to Market: Debugging mobile apps, White box testing, Black box testing, and test automation of mobile apps, JUnit for Android, Robotium, Monkey Talk, Versioning, signing and packaging mobile apps, distributing apps on mobile marketplace.	[8]				
<ul> <li>Text Books:</li> <li>[T1] Anubhav Pradhan, Anil V Deshpande, "Mobile Apps Development", First Edition, Wiley India</li> <li>[T2] Lauren Darcey and Shane Conder, "Android Wireless Application Development", Pearson Edu 2nd ed. (2011).</li> </ul>					
<ul> <li>Reference Books:</li> <li>[R1] Erik Hellman, "Android Programming – Pushing the Limits", 1st Edition, Wiley India Pvt Ltd</li> <li>[R2] Dawn Griffiths and David Griffiths, "Head First Android Development", 1st Edition, O'Reil Publishers, 2015.</li> <li>[R3] J F DiMarzio, "Beginning Android Programming with Android Studio", 4th Edition, Wiley In Ltd, 2016. ISBN-13: 978-8126565580.</li> </ul>	lly SPD				

[R4]Anubhav Pradhan, Anil V Deshpande, "Composing Mobile Apps" using Android, Wiley 2014, ISBN: 978-81-265-4660-2.

_____



Paper (	Code: A	RO 375								L	T/P	Credits
Subject	: Analy	sis and I	Design o	f Algori	thm					3	0	3
Teacher		<b>ne:</b> nuous Ev ry Exam		-		-						
INSTR	UCTIO	NS TO I	PAPER	SETTE	RS: Max	ximum I	Marks :	AS per	Universi	ity norm	IS	
<pre>&gt; (</pre>	Question short ans Apart fro nave two The quest the quest <b>Outcon</b> bility of bility of bility of	questions tions are to ions to be irement of <b>nes [Bloo</b> f students m [ <b>K1</b> , <b>K</b> f students f students	puld be co questions on No. 1, s. Howev to be fram asked sh f (scientif <b>om's Kn</b> s to unde <b>5</b> ]. s to unde s to unde	ompulsor the rest of er, studen ned keepi ould be a fic) calcu <b>owledge</b> erstand a erstand a yze the <b>C</b>	y and cov of the pap nts may b ing in vie at the leve lators/ log e Level ( nd evalu nd apply Greedy A	ver the en ver shall c e asked to w the lean el of the p g-tables/ o <b>KL)]:</b> ate the con- the cono- lgorithm	tire syllab onsist of o attempt rening outo rescribed data-table oncepts of cept of D as <b>[K4].</b>	four units only 1 qu comes of textbook es may be complex Dynamic	s as per the nestion fro course/pars. specified ity of alg Program	ne syllabu om each u aper. The l if requir gorithm a ming <b>[K</b>	us. Every u unit. standard/ red and types	unit should level of
CO4: A CO/PO		f students PO02	PO03	PO04	PO05	pt of NP <b>PO06</b>	PO07	PO08	em [K2]. PO09	PO10	PO11	PO12
CO1	3	3	3	3	2	-	-	-	-	1	1	2
CO2	3	3	3	3	2	-	-	-	-	1	1	2
CO3	3	3	3	3	2	-	-	-	-	1	1	3
CO4	3	3	3	3	2	-	-	-	-	1	1	3
Course	Conten	ıt										No of lectures
little-ol method	h notatio l, substi	tations for on, the li itution n ion sort,	ttle-ome	ga notat master 1	ion, Recimethod,	urrence i Data St	relations ructures	: iteratio for Dis	n metho joint Se	d, recurs ts,. Con	ion tree	[10]



<b>Unit II</b> Ingredients of Dynamic Programming, emphasis on optimal substructure , overlapping substructures, memorization. Matrix Chain Multiplication, Longest common subsequence and optimal binary search trees problems, 0-1 knapsack problem, Binomial coefficient computation through dynamic programming. Floyd Warshall algorithm.	[10]
<b>Unit III</b> Greedy Algorithms: Elements of Greedy strategy, overview of local and global optima, matroid, Activity selection problem, Fractional Knapsack problem, Huffman Codes, A task scheduling problem. Minimum Spanning Trees: Kruskal's and Prim's Algorithm, Single source shortest path: Dijkstra and Bellman Ford Algorithm.	[10]
<b>Unit IV</b> The naïve String Matching algorithm, The Rabin-Karp Algorithm, String Matching with finite automata, The Knuth-Morris Pratt algorithm.	[8]
<ul> <li>Text Books:</li> <li>[T1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., &amp; Stein, C. (2022). Introduction to algorithm press.</li> <li>[T2] Kleinberg, J., &amp; Tardos, E. (2006). Algorithm design. Pearson Education India.</li> </ul>	s. MIT
Reference Books:	

[R1] Baase, S. (2009). *Computer algorithms: introduction to design and analysis*. Pearson Education India.



Paper Code: ARO 377	L	T/P	Credits
Subject: Software Engineering	3	0	3

#### Marking Scheme:

Teachers Continuous Evaluation: As per university examination norms from time to time. End Term Theory Examination: As per university examination norms from time to time.

## **INSTRUCTIONS TO PAPER SETTERS: Maximum Marks : AS per University norms**

- > There should be 9 questions in the end term examination question paper
- Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions.
- Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, students may be asked to attempt only 1 question from each unit.
- ➤ The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks.
- > The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required

## Course Outcomes [Bloom's Knowledge Level (KL)]:

CO1: Student will be able to understand the concepts of Software Engineering.[K1, K2, K3]

**CO2:** Capability to perform requirement analysis and project planning of software systems. **[K2, K3] CO3:** Student would be able to meet and understand the design and reliability of software systems.**[K1, K2,** 

K4]

CO4: Student would be able software testing techniques and software maintenance. [K2, K3,K4]

	-	-			-	-	-			-	-	-
CO/P O	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	3	3	2	-	-	-	1	1	1	2
CO2	3	3	3	3	2	-	-	-	1	2	1	2
CO3	3	2	3	3	2	-	-	-	1	1	1	3
CO4	3	3	3	2	3	2	-	-	1	1	1	3
Course	Conten	t			-					-		No of lectures



<b>Unit I</b> Introduction: Software Engineering Paradigms. Software processes and its models (waterfall, Increment Process Models, Prototype Model, RAD, Spiral Model, Rational Unified Process) Agile Development model, plan driven vs agile model of development, agile methods and development techniques.	[10]
Unit II Software Requirement Analysis and Specification: Software Requirement Process, Functional and non-functional requirements, Quantifiable and Quality Requirements, System and software Requirements, requirement elicitation methods, requirement analysis and validation, requirement review or requirement change, SRS document. System modelling: Interaction models: Use case diagram, sequence diagrams, Structural models: class diagrams, generalization, aggregation, Behavioural models: ER diagrams, Data flow diagrams, data dictionaries.	[10]
<b>Unit III</b> Software Metrics: Project Metrics, Product Metrics and Process Metrics. Information flow Model Software Design: Architectural views and patterns, Modularity (cohesion and coupling), Information hiding, Functional independence, Function Oriented Design, Object Oriented Design, User Interface Design.	[10]
<b>Unit IV</b> Software Testing: Software process, Functional testing: Boundary value analysis, Equivalence class testing, Decision table testing, Cause effect graphing, Structural testing: Path testing, Data flow and mutation testing, unit testing, integration and system testing, User testing (alpha, beta and acceptance testing).	[10]
<ul> <li>Text Books:</li> <li>[T1] Pressman, R. S. (2005). Software engineering: a practitioner's approach. Palgrave macmillar</li> <li>[T2] Aggarwal, K. K. (2005). Software engineering. New Age International.</li> <li>[T3] Ian Sommerville, "Software Engineering", 10th edition, Pearson, 2018.</li> </ul>	1.
<ul> <li>Reference Books:</li> <li>[R1] Sommerville, I. (2011). Software Engineering, 9/E. Pearson Education India.</li> <li>[R2] Jalote, P. (2012). An integrated approach to software engineering. Springer Science &amp; Busi Media.</li> <li>[R3] Bruegge, B., &amp; Dutoit, A. H. (2009). Object–oriented software engineering. using uml, pattijava. Learning, 5(6), 7</li> <li>[R4] Blaha, M., &amp; Rumbaugh, J. (2005). Object-oriented modeling and design with UML. Pearson Education India.</li> </ul>	erns, and



#### Paper Code: ARO 379 T/P L Credits **Subject: Internet of Things** 3 0 3 Marking Scheme: Teachers Continuous Evaluation: As per university examination norms from time to time. End Term Theory Examination: As per university examination norms from time to time. **INSTRUCTIONS TO PAPER SETTERS: Maximum Marks : As per University norms** > There should be 9 questions in the end term examination question paper > Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. > Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, students may be asked to attempt only 1 question from each unit. > The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks. > The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required Course Outcomes [Bloom's Knowledge Level (KL)]: **CO1:** Ability of students to implement the basic knowledge of Internet of things and protocols. **[K1, K2, K3] CO2:** Ability of students to implement knowledge of IoT in some of the application areas where IoT can be applied and learn about the middleware for IoT. [K1, K2] CO3: Ability of students to utilize the concepts of IoT architecture, IoT reference model and overview of IoTivity stack architecture. **[K1, K2, K3]** CO4: Ability of students to utilize and implement solid theoretical foundation of the IoT Platform and System Design. [K1, K2] **CO/PO PO01 PO02 PO03 PO04 PO05** PO06 **PO07 PO08 PO09 PO10** PO11 PO12 3 2 2 2 3 3 3 1 1 3 2 3 **CO1** 3 3 3 3 2 2 1 1 3 2 2 3 **CO2** 3 3 3 2 2 1 3 2 2 3 3 1 CO3

## **Course Content**

3

3

3

3

2

## Unit I

**CO4** 

Introduction to IoT: Meaning of IoT, Importance of IoT, Elements of an IoT ecosystem, Technology drivers, Business drivers, Trends and implications, Overview of Governance, Privacy [8] and Security Issues. Technologies involved in IoT development, Internet web and Networking technologies, Infrastructure, Overview of IoT supported Hardware platforms.

2

1

1

3

2

2

3

No of

lectures



<b>Unit II</b> <b>IoT protocols:</b> Protocol Standardization for IoT, Efforts, M2M and WSN Protocols, Role of M2M in IoT, M2M Value Chains, IoT Value Chains, An emerging industrial structure for IoT, SCADA and RFID Protocols, Issues with IoT Standardization, Unified Data Standards Protocols, IEEE802.15.4–BACNet Protocol, Modbus, KNX, Zigbee, Network layer, APS layer – Security.	[9]
Unit III IoT Architecture: IoT Open-source architecture (OIC), OIC Architecture & Design principles IoT reference Model and Architecture: Functional View, Information View, Deployment and Operational View, IoT Devices and deployment models, IoTivity: An Open source IoT stack Overview: IoTivity stack architecture, Resource model and Abstraction.	[10]
<ul> <li>Unit IV</li> <li>Web of things: Web of Things versus Internet of Things, Two Pillars of the Web, Architecture Standardization for WoT, Platform Middleware for WoT, Unified Multitier</li> <li>WoT Architecture: WoT Portals and Business Intelligence</li> <li>IoT applications Applications for industry: Future Factory Concepts, Smart Objects, Smart Applications. Study of existing IoT platforms /middleware.</li> </ul>	[8]
Toyt Dooks	

#### **Text Books:**

- [T1] Zhou, H. (2012). The internet of things in the cloud. Boca Raton, FL: CRC press.
- [T2] Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds) (2011) Architecting the Internet of Things, Springer.
- [T3] Easley, D., & Kleinberg, J. (2010). *Networks, crowds, and markets: Reasoning about a highly connected world*. Cambridge university press.
- [T4] Hersent, O., Boswarthick, D., & Elloumi, O. (2011). *The internet of things: Key applications and protocols*. John Wiley & Sons.

#### **Reference Books:**

[R1] Bahga, A., & Madisetti, V. (2014). Internet of Things: A hands-on approach. Vpt.Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", 1st Edition, Apress Publications, 2013

[R2] Pfister, C. (2011). *Getting started with the Internet of things: connecting sensors and microcontrollers to the cloud.*" O'Reilly Media, Inc.".



Paper	Code: A	ARO 372								L	T/P	Credits
Subje	ct: Oper	ations N	lanagei	nent						3	0	3
Teach End T	erm The	e <b>me:</b> inuous E ory Exar <b>ONS TO</b>	ninatior	n: As per	univer	sity exan	nination	norms f				
> [	There sho	uld be 9 c	questions	in the er	nd term e	examinati	on questi	on paper				
> (	Question	No. 1 sho	ould be c	ompulso	ry and c	over the	entire syl	llabus. T	his quest	ion shoul	d have o	bjective o
S	short ansv	ver type q	uestions	. It shoul	d be of 1	5 marks.	·		•			C C
$\gg 1$	Apart from	n Questio	n No. 1,	the rest o	f the pap	er shall c	onsist of	four unit	s as per th	ne syllabu	s. Every	unit shoul
		questions 15 marks		er, studer	nts may b	be asked t	to attempt	t only 1 c	question f	from each	unit. Eac	ch question
$\gg$	The quest	ions are to	o be fran	ned keep	ing in vi	ew the lea	arning ou	tcomes o	of course/	paper. Tl	ne standar	rd/level o
t	he questi	ons to be	asked sh	ould be a	t the lev	el of the	prescribe	d textboo	oks.			
$\gg$	The requi	rement of	(scientif	fic) calcu	lators/ lo	g-tables/	data-tabl	les may l	pe specifi	ed if requ	ired.	
Cours	se Outco	omes [Bl	oom's F	Knowled	lge Lev	el (KL)]	:					
CO1	•	y of stude s [ <b>K2, K</b>		levelop t	he basic	e knowle	edge of o	peration	is manag	gement a	nd indus	trial plan
CO2	Ability	y of stude	ents to c	alculate	the dem	nand fore	ecast and	l design	the proc	ess acco	rdingly.	[K2, K3]
CO3	Ability	y of stude	ents to u	se vario	us inver	ntory mo	dels for	the inve	entory pl	anning. [	K2, K3,	K4]
CO4	Ability [ <b>K1, K</b>		ents to	understa	nd the i	mportan	ce of ma	aintenan	ce for th	ne manut	facturing	industry
CO/ PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	2	2	2	2	2	2	-	-	-	-	2	3
<b>CO2</b>	3	3	3	3	3	2	-	-	-	-	2	3
CO3	3	3	3	3	3	2	-	-	-	-	2	3
CO4	3	2	2	2	3	2	-	-	-	-	2	3
Cours	se Conte	ent										No of Lecture
Histor	duction y of Pro	to Production oduction	and Op	erations	Manag	ement; l	Definitio					[9]



Management Definition of Operations Management: An Outline of Operations Strategy; Factors Affecting Operations Management, Operations Planning and Control <b>Plant Layout and Material Handling</b> Site Selection, Types of Layout, Factors Affecting Layout, Plant Building, Flexibility and Expandability, Principles of Material Handling, Types and Selection of Materials Handling Equipment's.	
Unit II Concept of Forecasting Importance and Objectives of Forecasting, Principle of Forecasting, Classification of Forecasting; Qualitative and Quantitative Techniques of Forecasting: Qualitative Techniques, Quantitative Techniques Product Process and Service Design Product Selection; Definitions of Product Design and Development: Need for Product Design and Development, Process Planning and Design, Major Factors Affecting Process Design Decisions, Types of Process Designs, Interrelations among Product Design, Process Design & Inventory Policy	[9]
<ul> <li>Unit III</li> <li>Material Management</li> <li>Definition and Scope; Functions; Types of Materials; Analytical Structure of Inventory Models; Material Requirement Planning (MRP); Bill of Material, Master Production Schedule; Purchase Management; Storekeeping and Issue of Materials; Material Handling; Just in Time (JIT) And Kanban Systems. Lean Manufacturing: Introduction-Definition and Scope-Continuous Vs. Lean, Production-Benefits and Methodology – Process Oriented Continuous Improvement Teams.</li> <li>Inventory Management</li> <li>Nature of Inventories, Opposing Views of Inventories, Fixed-Order Period and Quantity Systems, Inventory Models, ABC Analysis Inventory Planning,</li> </ul>	[9]
Unit IV Manufacturing operations scheduling: Scheduling Process-Focused Manufacturing, Scheduling for Job Shop, Flexible Manufacturing System and Product Focused Manufacturing, Computerized Scheduling System, Gantt Chart Maintenance management Definition and Objective of Maintenance Management, Planned Production Maintenance, Preventive Maintenance, Machine Reliability, Reliability Centered Maintenance	[9]
Text Books: [T1] Productions and Operations Management, Adam & Ebert Prentice Hall, 2008 [T2] Production and Operations Management: An Applied Modern Approach, Joseph S. Martini Wiley Student Edition, 2008	ch,
<ul> <li>Reference Books:</li> <li>[R1] Modern Production / Operations Management, Buffa, E.S., Sarin, R.K., John Willey and So 2014.</li> <li>[R2] Productions and Operations Management, Chase Aquilano &amp; Richard Irwin, McGraw Hill Series 2010.</li> </ul>	ons



Paper (	Code: A	RO 374								L	T/P	Credits
Subject	: Metav	verse								3	0	3
Teacher		nuous Ev		-		•		orms fro rms from			·	
INSTR	UCTIO	NS TO I	PAPER	SETTE	RS: Ma	<b>ximum</b> I	Marks :	As per l	U <b>niversi</b>	ty norm	S	
> ( > / > / Course CO1: A CO2: A CO3: A	Question answer ty Apart fro have two The ques questions The requ <b>Outcon</b> bility of bility of bility of bility of	ype questi om Questi questions tions are to be ask irement o <b>nes [Bloo</b> students f students f students	ould be co ons. on No. 1, s. Howev to be fran ted should f (scientin <b>om's Kn</b> to under s to under s to learr	the rest of er, studen ned keep d be at th fic) calcu <b>nowledg</b> rstand m erstand b	by and cov of the pap nts may b ing in vie e level of lators/ log e Level ( netaverse building b e metave	ver the en per shall c be asked to w the leas f the preso g-tables/ ( <b>KL</b> )]: and AR plocks of erse will	tire sylla consist of consist of consist consist of consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist consist	bus. This four units only 1 qu comes of atbooks. es may be nnologies averse [ <b>I</b> onize eve	s as per the section from the section from the section from the section of the se	ne syllabu om each u aper. The l if requir 2] [K1, K2	s. Every u unit. standard/ ed	ive or shor unit should level of the
- ,	T	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	2	1	1	3	-	-	-	1	2	1	3
CO2	3	2	3	3	3	-	-	-	2	2	2	3
CO3	3	2	1	3	3	-	-	-	2	2	2	3
CO4	3	3	3	3	3	-	-	-	3	2	2	3
Course	Conten	t										No of lectures
definitio Metaver eXtende	on, The rse, Der ed Realit	next int mo of t ty, Exper	ernet, A he Meta ience XI	Application averse. R , XR A	ons of t AR/VR: Application	he Meta Demyst ons, XR 1	verse A tifying of for Socia	dvantage eXtendec	es and C l Reality Working	Challenge y, Unde with XI	tainty, A es of the rstanding R, Design averse	[10]
Unit II	_		_								lardware,	[10]

Payment rails, Blockchains and metaverse.



Unit III	
How the metaverse will revolutionize Everything: When will the metaverse arrive?, Meta-businesses, Metaverse winners and losers, Metaversal existence, The Metaverse vs. Web 3.0, Types of the Metaverse, Cryptocurrency and the Metaverse, NFTs and the Metaverse.	[10]
Unit IV	
Metaverse case study: Metaverse in Education: Vision, Opportunities, and Challenges; Metaverse Virtual Learning Management Based on Gamification Techniques Model to Enhance Total Experience; Metaverse Framework: A Case Study on E-Learning Environment (ELEM); Augmented Reality in Surgery: A Scoping Review, A Case Study on Metaverse Marketing of Jewelry Brand, Agricultural Metaverse: Key Technologies, Application Scenarios, Challenges and Prospects.	[8]
Text Books:	
[T1] Matthew Ball, (2022), The Metaverse: And How It Will Revolutionize Everything, Liveright, 9781324092049	ISBN:
[T2] Mystakidis, S. (2022). Metaverse. Encyclopedia, 2(1), 486-497.	
Reference Books:	
[R1] Lin, H., Wan, S., Gan, W., Chen, J., & Chao, H. C. (2022). Metaverse in education: Vision,	
opportunities, and challenges. arXiv preprint arXiv:2211.14951.	
[R2] Srisawat, S., & Piriyasurawong, P. (2022). Metaverse Virtual Learning Management Based on	
Gamification Techniques Model to Enhance Total Experience. International Education Studies	, 15(5),
153-163.	

- [R3] Dahan, N. A., Al-Razgan, M., Al-Laith, A., Alsoufi, M. A., Al-Asaly, M. S., & Alfakih, T. (2022). Metaverse framework: A case study on E-learning environment (ELEM). Electronics, 11(10), 1616.
- [R4] Kang, H. R. (2022). A Case Study on Metaverse Marketing of Jewelry Brand. Journal of Digital Convergence, 20(1), 285-291.
- [R5] Feng, C. H. E. N., Chuanheng, S. U. N., Bin, X. I. N. G., Na, L. U. O., & Haishen, L. I. U. (2022). Agricultural Metaverse: Key Technologies, Application Scenarios, Challenges and Prospects.



Paper Code: ARO 376	L	T/P	Credits
Subject: Industry 4.0	3	0	3
Marking Scheme:			
Teachers Continuous Evaluation: As per university examination norms from time to	time.		

End Term Theory Examination: As per university examination norms from time to time.

## **INSTRUCTIONS TO PAPER SETTERS: Maximum Marks : As per University norms**

- > There should be 9 questions in the end term examination question paper
- Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions.
- Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, students may be asked to attempt only 1 question from each unit.
- The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks.
- > The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required

Course	Outcom	nes [Bloo	om's Kn	owledge	E Level (	KL)]:						
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	3	3	2	-	-	-	3	2	2	3
CO2	3	3	3	3	2	-	-	-	3	2	2	3
CO3	3	3	3	3	2	-	-	-	3	2	2	3
CO4	3	3	3	3	2	-	-	-	3	2	2	3
Course	Conten	t					1	1				No of lectures
Applicat	and Destion area	is, Dissei	<b>1</b>	of Indus	stry 4.0 a	nd the co	ontributir	ng discip			stry 4.0, uation of	
Manage	hysical ament, Ament, Ament, Ament, Ament, America and	Systems ugmente Advancec	and Nex d Reality d Analys	t Genera y and Vi is, Cybe	tion Sen rtual Rea ersecurity	ality tech for Inc	nnologies lustry 4.0	s, Artific 0, Introd	ial Intell luction t	igence, l	Lifecycle Big Data rial IoT:	[9]



Unit III Industrial IoT (IIoT)	
Introduction, IIoT Business models, Architecture, Industrial IoT Sensing, Industrial IoT	[9]
Communication, Big Data analytics and software-defined networks, Data management with Hadoop	
for IIot, IIot analytics, Industrial IoT security and Fog Computing.	
Unit IV	
Tools of Industry 4.0	
Tools for Industry 4.0: Artificial Intelligence, Big Data Analytics, Machine Learning, Cloud	
Computing, Cyber security, Virtual Reality, Augmented Reality, IoT, Robotics, Applications	[9]
domain of Industrial Internet of Things (IoT): Manufacturing, Healthcare, Education, Aerospace	
and Defense, Agriculture, Transportation and Logistics. Impact of Industry 4.0 on Society: Impact	
on Business, Government and Society.	
Text Books:	
[T1] Jean-Claude André, Industry 4.0, Wiley- ISTE, July 2019, ISBN: 781786304827, 2019	
[T2] S. Misra, A. Mukherjee, and A. Roy, Introduction to IoT. Cambridge University Press, 2020	)
[T3] P. Kaliraj, T. Devi, Big Data Applications in Industry 4.0, ISBN 9781032008110, CRC Pres	ss, Taylor
& Francis Group, 2022	
Reference Books:	
[R1] Alasdair Gilchrist, Industry 4.0- The Industrial Internet of Things, Apress Berkeley, CA, 20	16 978-1-
4842-2047-4	



Paper	Code:	ARO 37	78							L	T/P	Credits
Subjec	t: Supp	oly Cha	in Mar	ageme	nt					3	0	3
Teache End Te	erm The	tinuous eory Ex	aminati	on: As	per univ	ersity ex	examinat aminatic num Ma	on norms				
> T	here sho	ould be 9	questio	ns in the	e end tern	n examin	ation que	stion pap	er.			
≫ Q	uestion	No. 1 s	hould be	e compu	lsory and	l cover th	ne entire	syllabus.	This que	stion sho	uld have o	bjective or
sł	nort ansv	wer type	questio	ns. It sh	ould be o	f 15 marl	KS.					
≫ A	part fro	m Quest	ion No.	1, the rea	st of the p	aper shal	l consist o	of four un	its as per	the syllab	ous. Every	unit should
		questior 15 mar		ever, stu	dents ma	y be aske	d to atten	npt only 1	question	from eac	ch unit. Eac	ch question
				amed ke	ening in	view the	learning	outcomes	of cours	e/naner 「	The standa	rd/ level of
	•						ne prescri			c/paper.	i ne standa	
							es/ data-ta			fied if rec	juired.	
Cours	e Outco	omes [E	Bloom's	Know	ledge L	evel (KI	L)]:		-		-	
CO1		ty of stution for				strategic	importa	nce of go	ood suppl	y chain	design, pla	anning and
CO2	Abilit	ty of stud	dents to	analyze	the perfo	rmance c	of the sup	ply chain	[K2, K3	9, K4]		
CO3	Abili	ty of stı	idents to	o desigi	n and ana	alyze the	effectiv	e networ	k for the	supply c	chain. <b>[K</b> 2	2, K3, K4]
CO4	Abili	ty of stu	udents t	o under	stand the	e import	ance of c	coordinat	ion in su	ipply cha	ain. <b>[K1,</b> ]	K2]
CO/ PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	2	2	2	2	2	2	-	-	1	-	2	3
CO2	3	3	3	3	3	2	-	-	1	-	2	3
CO3	3	3	3	3	3	2	-	-	1	-	2	3
CO4	3	2	2	2	3	2	-	-	1	-	2	3
Course	Conte	nt	·			•			•	•		No of lectures
Unit I Introd Unders		g Suppl	y Chain	, Suppl	y Chain	Perform	ance; Su	pply Ch	ain Drive	ers and C	Obstacles.	[8]



Planning Demand and Supply in a Supply chain	
Demand Forecasting in Supply Chain, Aggregate Planning in Supply Chain, Planning Supply and	
Demand; Managing Predictable Variability, Economic Order Quantity Models, Reorder Point Models, Multi-Echelon Inventory Systems. Managing Uncertainty in a Supply Chain, Determining Optimal Levels	
of Product Availability.	
Unit II	
Supply Chain Performance	
Supply Chain Strategies, Achieving Strategic Fit, Product Life Cycle, The Minimize Local Cost	
View, The Minimize Functional Cost View, The Maximize Company Profit View, The	[0]
Maximize Supply Chain Surplus View.	[9]
Sourcing Decisions in Supply Chains	
Role of Sourcing in Supply Chains, Supplier Assessment, Design Collaboration, Sourcing	
Planning and Analysis, Market Sourcing Decisions in Practice.	
Unit III	
Network Design	
Factors Influencing Distribution in Network Design, Distribution Networks in Practice,	
Framework for Network Design Decisions, Models for Facility Location and Capacity	
Allocation, Making Network Design Decisions in Practice. Global Supply Chain Networks.	[9]
Transportation in a Supply Chain Excilition Affacting Transportation Decisions, Modes of Transportation and their Performance	
Facilities Affecting Transportation Decisions, Modes of Transportation and their Performance Characteristics, Design Options for A Transport Network, Trade-offs in Transportation	
Decisions, Tailored Transportation, Routing and Scheduling in Transportation, Making	
Transportation Decisions in Practice.	
Unit IV	
Coordination in a Supply Chain	
Lack of Supply Chain Coordination and The Bullwhip Effect, Effect of Lack of Coordination on	[8]
Performance, Obstacles to Coordination, Managerial Levers to Achieve Coordination, Achieving	[0]
Coordination in Practice. Information Technology and its use in Supply Chain.	
Text Books:	
[T1] Marketing logistics: A Supply Chain Approach, Kapoor K K, Kansal Purva, Pearson Education	on Asia.
[T2] Logistics and Supply Chain Management, Christopher Martin, Pearson Education Asia.	
Reference Books:	
[R1] Supply Chain Management–Strategy, Planning and Operation ,Sunil Chopra and Peter Mein	dl,
Pearson/PHI,3rdEdition.	a
[R2] Designing and Managing the Supply Chain: Concepts, Strategies, and Case Studies, Levi D.,	S.,
Kaminsky P. And Levi E.S., McGraw Hill Inc. New York.	

-------



Paper C	ode: AF	RO 380								L	T/P	Credits
-			oot Ma	nagom	ont							
Subject:		-		nagem	ent					3	0	3
	S Continu	ious Ev		-		sity exan ity exami						
INSTRU	JCTION	IS TO	PAPER	SETT	ERS:	Maxim	um Mar	ks: As p	oer Uni	versity 1	norms	
> ( s > A s E > 7 0 > 7 Course ( CO1: R CO2: A	Question I hort answ apart from hould hav Each quest f the quest f the quest he requir Outcom Recall the	No. 1 sho yer type in Questi ye two q tion sho ons are stions to rement o estimate e definit and sele	ould be o question on No. 1 uestions uld be 1: to be fra be aske f (scient <b>om's K</b> tion of a cct appro	compuls s. It sho , the res . Howev 5 marks med kee d should ific) cale nowled a softwa opriate	ory and c uld be of st of the p yer, stude eping in v l be at the culators/ lge Leve project s	15 marks paper shall nts may b view the le e level of log-tables el (KL)]: ct and dif chedulin	entire syll consist c e asked to earning ou the prescr data-tab fferentiat g methoo	abus. The of four under the other of the other other of the other othe	is questi nits as pe conly 1 o of course tbooks. be speci n other echnique	er the syll question : e/paper. T fied if rea types of es <b>[K2]</b> .	labus. Ev from eac The stand quired projects	h unit. lard/ level
<b>CO4:</b> A	analyze t	he effe	ctivenes	s of. <b>[K</b>	<b>[4].</b>	mate the			<u> </u>	-		1
CO/PO CO1	<b>PO01</b> 3	<b>PO02</b>	<b>PO03</b>	<b>PO04</b>	2 PO05	PO06	PO07	PO08	<b>PO09</b>	<b>POI0</b>	<b>PO11</b>	2
CO1 CO2	3	3	3	3	2	-	-	-	1	2	1	2
CO2 CO3	3	3	3	3	2	-	_	_	1	1	1	3
CO4	3	3	3	3	3	2	_	_	1	1	1	3
Course	Content				1					1		No of Lectures
(SP), SI system, Softwa task set [Work	P Vs. oth manage re Proje and task Breakdo ing proje	ner type ment co ect sche netwoi wn Stri	es of pro ontrol. eduling rk, sche ucture].	ojects ac and pl duling, Selecti	ctivities lanning: earned v ing a pr	nent (SF covered : Basic c value ana oject, ide oject cha	by SPM, oncepts, lysis ind entifying	categor project icators, project	izing S schedu Project scope	Ps, proje ling, det element and obj	ect as a fining a s, WBS ectives,	[0]



	1
Unit II: Project Estimation and Evaluation: software project estimation, decomposition techniques, empirical estimation models, estimation for object oriented projects, estimation for Agile development and Web engineering projects. Cost benefit analysis, cash flow forecasting, cost benefit evaluation techniques, risk evaluation. Selection of an appropriate project report; choice of process model, structured methods, rapid application development, water fall, spiral models, Prototyping delivery, Albrecht function point analysis.	[10]
Unit III:	
Activity planning: Objectives of activity planning, project schedule, projects and activities, sequencing and scheduling activities, Network planning model; Network Diagrams : CPM, Bar Charts, Gantt Chart, PERT [ Activity-on-arrow network; Activity on Node network ] Precedence network; Forward pass; Backward pass; Critical path. Risk Analysis and Management: Risk and risk types, Risk Break down Structure, Risk management process, Evaluating schedule risk using PERT.	[12]
Unit IV:	
<ul> <li>Resource allocation &amp; Monitoring the control: Introduction, the nature of resources, identifying resource requirements, visualizing progress, Project Tracking, Status Reports, Milestone Analysis, Actual Versus Estimated Analysis of Effort and Schedule.</li> <li>Software quality and project closure: Defining software quality attributes, ISO 9126, Software quality measures, Project Closure Analysis, The Role of Closure Analysis, Performing Closure Analysis.</li> <li>Project Management Case Study.</li> </ul>	[10]
Text Books: [T1] Software Project Management (2nd Edition), by Bob Hughes and Mike Cottrell, 1999, 7 [T2] Software Project Management, Walker Royce, 1998, Addison Wesley.	ГМН
<ul> <li>Reference Books:</li> <li>[R1] R. S. Pressman, Software Engineering, TMH, 7th ed.</li> <li>[R2] Pankaj Jalote, Software project management in practice, Addison-Wesley</li> <li>[R3] Robert T. Futrell, Donald F. Shafer, and Linda I. Shafer, "Quality Software Project Management", 2002, Pearson Education Asia.</li> <li>[R4] Ramesh Gopalaswamy, "Managing Global Software Projects", 2003, Tata McGraw-Hil</li> <li>[R5] S. A. Kelkar, "Software Project Management"</li> </ul>	1



Paper	Code: A	RO 382								L	T/P	Credits
Subjec	t: Mode	ling and	l Simula	tion						3	0	3
Teache End Te	erm The	inuous E ory Exar	valuation nination <b>PAPER</b>	: As per	universit	y exami	nation no	orms fro		to time.		
≫	There she	ould be 9	questions	s in the er	nd term e	xaminatio	on questio	on paper.				
>	Question	No. 1 sł	nould be	compulso	ory and co	over the e	entire syll	abus. Th	nis questi	on should	have obj	ective o
5	short ans	wer type	questions	. It shoul	d be of 15	5 marks.						
$\gg 1$	Apart from	m Questio	on No. 1,	the rest of	f the pape	r shall co	nsist of fo	our units	as per the	e syllabus.	Every un	it should
		questions 15 mark		er, studen	its may be	e asked to	attempt	only 1 qu	uestion fr	om each u	nit. Each	questior
≥]	The quest	ions are t	to be fram	ned keepi	ng in vie	w the lear	rning out	comes of	f course/p	aper. The	standard	/ level of
1	the questi	ions to be	asked sh	ould be a	t the leve	l of the p	rescribed	textbool	ks.			
≫	The requ	irement o	of (scienti	fic) calcu	lators/ lo	g-tables/	data-tabl	es may b	e specifie	ed if requi	red.	
Cours	e Outco	mes[Blo	om's Ki	nowledg	e Level	(KL)]:						
CO1			gain a c m abstra	-			0			l concep	ots of m	odeling
CO2	Studen <b>K2</b> ]	ts will le	earn aboi	ut differe	ent simu	lation te	chniques	s used in	n modeli	ng variou	ıs syster	ns. <b>[K1</b>
CO3		ts will ac nulation.		actical sl	cills in u	sing sim	ulation s	oftware	tools co	mmonly ι	ised in n	nodeling
CO4			earn ho lts. <b>[K3</b> ,		llect rele	evant da	ta to inf	form the	e model	ing proce	ess and	validate
CO/ PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	2	3	3	-	-	-	3	3	1	2
CO2	3	2	3	2	3	-	-	-	3	3	2	2
CO3	3	3	3	2	2	-	-	-	3	2	2	3
<b>CO4</b>	3	3	2	3	3	-	-	-	3	3	2	3
Cours	e Conte	nt										No of lecture
System	luction	nment, c				0		0		of appl odels, ste		[8]



<b>Simulation Examples:</b> Simulation of Queuing systems, Simulation of Inventory System, Other simulation examples.	
<ul> <li>Unit II</li> <li>General Principles: Concepts in discrete - event simulation, event scheduling/ Time advance algorithm, simulation using event scheduling.</li> <li>Random Numbers: Properties, Generations methods, Tests for Random number- Frequency test, Runs test, Autocorrelation test.</li> </ul>	[8]
<b>Unit III</b> <b>System Simulation:</b> Techniques of simulation, Monte Carlo method, Experimental nature of simulation, Distributed lag models, Cobweb models Continuous system models, Analog and Hybrid simulation, Feedback systems, Computers in simulation studies. <b>Simulation software:</b> Comparison of simulation packages with programming languages, classification of simulation software, Description of a general purpose simulation package, Design of scenario and modules, dialog box, database, animation, plots and output, interfacing with other software, summary of results. Examples with MATLAB/ AWESIM / ARENA.	[8]
<b>Unit IV</b> <b>Analysis after simulation:</b> Importance of the variance of the sample mean, Procedure for estimating mean and variance, Subinterval method, Replication Method, Regenerative method; Variance reduction techniques, Start up policies, Stopping rules, Statistical inferences, Design of experiments. Verification and validation of simulated models, optimization via simulation. Case studies on application of modelling and simulation in manufacturing systems.	[8]
<ul> <li>Text Books:</li> <li>[T1] Averill M. Shaw, "Simulation Modeling and Analysis", Tata McGraw-Hill, 2007.</li> <li>[T2] Jerry Banks, John S Carson, II, Berry L Nelson, David M Nicol, Discrete Event system Simulation, Education, Asia, 4th Edition, 2007, ISBN: 81-203-2832-9.</li> <li>[T3] Geoffrey Gordon, "System Simulation", Prentice Hall India, 1969.</li> <li>Reference Books:</li> <li>[R1] Robert E. Shannon, "System Simulation: The Art and Science", Prentice Hall India, 1975.</li> </ul>	Pearson
<ul> <li>[R1] Robert E. Shannon, System Simulation: The Art and Science, Prentice Hall India, 1975.</li> <li>[R2] Charles M Close and Dean K. Frederick Houghton Mifflin, "Modelling and Analysis of D Systems:, TMH, 1993.</li> <li>[R3] Allan Carrie, "Simulation of manufacturing" John Wiley &amp; Sons, 1988.</li> </ul>	)ynamic



<u> </u>	Code: AI	RO 384								L	T/P	Credits
Subject	: Databa	ase Man	agemen	t Systen	ıs					3	0	3
Markin	g Schem	ne:										
				-		-		orms from				
End Ter	m Theor	y Exami	nation: A	As per ui	niversity	examina	ation nor	ms from	time to t	time.		
INSTRU	UCTION	NS TO P	PAPER S	SETTEI	RS: Max	kimum N	Aarks : A	As per U	niversit	y norms	5	
▶ ]	There sho	uld be 9 d	questions	in the en	d term ex	aminatio	n questio	n paper				
				mpulsory	y and cov	er the ent	ire syllab	ous. This c	question s	hould ha	ve objecti	ve or shor
	answer ty			the rest o	f the new	ar chall a	ancist of t	form resito	og nor th	o orillohu	Energy	nit chould
	-							only 1 qu	-	-	•	init should
		•			•		•	• •				level of th
Ç	questions	to be ask	ed should	l be at the	e level of	the presc	ribed text	tbooks.		-		
▶ ]	The requi	rement of	(scientif	ic) calcul	lators/ log	g-tables/ d	lata-table	s may be	specified	if require	ed	
	bility of							Iodel <b>[K</b>		<b>K</b> 21		
C <b>O4:</b> A		students									differen	t NoSQL
C <b>O4:</b> A d	atabases	students			erent typ						differen PO11	it NoSQL
CO4: A d CO/PO	atabases	students [K4]	to comp	oare diffe	erent typ	es of No	SQL Dat	tabases a	nd RDB	MS with	-	1
CO4: A d CO/PO CO1	atabases PO01	students [K4] PO02	to comp	oare diffe	PO05	es of No	SQL Dat	tabases a	nd RDB	MS with	PO11	PO12
CO4: A	atabases PO01 3	students [K4] PO02 3	to comp <b>PO03</b> 3	PO04	PO05	es of No PO06 -	SQL Dat PO07 -	tabases a PO08 -	nd RDB PO09 -	MS with PO10 -	<b>PO11</b>	<b>PO12</b> 2
CO4: A d CO/PO CO1 CO2	atabasesPO0132	students [K4] PO02 3 3	to comp <b>PO03</b> 3 3	PO04 3 3	PO05           1           1	es of No PO06 - 1	SQL Dat PO07 -	tabases a PO08 -	nd RDB PO09 -	MS with PO10 -	<b>PO11</b> 1 1	<b>PO12</b> 2 2 2
CO4: A d CO/PO CO1 CO2 CO3 CO4	atabases PO01 3 2 2	students           [K4]           PO02           3           3           3           3           3           3	to comp <b>PO03</b> 3 3 3	PO04         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3	PO05 1 1 1 1	es of No PO06 - 1 1	SQL Dat PO07 -	tabases a PO08 -	nd RDB PO09 -	MS with PO10 -	PO11 1 1 2	PO12 2 2 3
CO4: A d CO/PO CO1 CO2 CO3 CO4 Course Unit I What is	atabases PO01 3 2 2 3 Content Database	students [K4] PO02 3 3 3 3 3 5 5	PO03 3 3 3 3 , Purpos	PO04 3 3 3 3 3 3	PO05           1           1           1           1           1	es of No PO06 - 1 1 1	SQL Dat PO07 - - -	tabases a PO08 -	nd RDB PO09	MS with PO10	PO11       1       2       2	PO12 2 2 3 3 No of lectures
CO4: A d CO/PO CO1 CO2 CO3 CO4 Course Unit I What is Architec	atabases PO01 3 2 2 3 Content Database	students [K4] PO02 3 3 3 3 3 5 5	PO03 3 3 3 3 , Purpos	PO04 3 3 3 3 3 3	PO05 1 1 1 1 1 abase sys	es of No PO06 - 1 1 1	SQL Dat PO07 - - -	PO08       -       -       -       -       -       -	nd RDB PO09	MS with PO10	PO11       1       2       2	PO12 2 2 3 3 No of lectures
CO4: A d CO/PO CO1 CO2 CO3 CO4 Course Unit I What is Architec Unit II Database	atabases PO01 3 2 2 3 Content Database cture, Da e design	students [K4] PO02 3 3 3 3 3 4 e System ta Mode and ER	PO03 3 3 3 3 3 4 A, Purpos ls, Trans	PO04 3 3 3 3 3 3 3 3 3 3 3 3 3	PO05 1 1 1 1 1 abase sys Aanagem ew, cons	es of No PO06 - 1 1 1 stem, Vie ent. straint, F	SQL Dat PO07 - - - - ew of dat ERD Issu	tabases a PO08 ta, Relati	nd RDB PO09 onal data a entity s	MS with PO10 abases, I sets, Coo	PO11 1 1 2 2 2 Database dd rules,	PO12 2 2 3 3 No of lectures [7]
CO4: A d CO/PO CO1 CO2 CO3 CO4 Course Unit I What is Architec Unit II Databass elationa	atabases PO01 3 2 2 3 Content Database cture, Da e design al s	students [K4] PO02 3 3 3 3 3 3 4 e System ta Mode and ER schemas,	PO03 3 3 3 3 3 3 4 3 3 5 5 5 5 7 7 8 8 7 8 8 7 8 7 8 7 8 7 8 7	PO04 3 3 3 3 3 3 3 5 6 6 0 7 1 1 1 1 1 1 1 1 1 1 1 1 1	PO05 1 1 1 1 1 abase sys Aanagem ew, cons on	es of No PO06 - 1 1 1 stem, Vie ent. straint, E to	SQL Dat PO07 - - - ew of dat ERD Issu Unified	tabases a PO08 ta, Relati	nd RDB PO09 onal data c entity s lodeling	MS with PO10 abases, I sets, Coo	PO11 1 1 2 2 2 Database dd rules, anguage,	PO12 2 2 3 3 No of lectures [7] [11]
CO4: A d CO/PO CO1 CO2 CO3 CO4 Course Unit I What is Architec Unit II Database elationa	atabases       PO01       3       2       2       3       Content       Database       cture, Da       e design       al     s       ization(1)	students [K4] PO02 3 3 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	PO03 3 3 3 3 3 3 3 4 3 5 5 5 5 7 7 8 8 7 8 7 8 7 8 7 8 7 8 7 8	PO04 3 3 3 3 3 3 3 5 6 6 7 8 9 10 10 10 10 10 10 10 10 10 10	PO05 1 1 1 1 1 1 abase sys Aanagem ew, cons lational A	es of No PO06 - 1 1 1 1 stem, Vie ent. straint, E to Algebra:	SQL Dat PO07 - - - - ew of dat ERD Issu Unified Introduc	tabases a PO08 ta, Relati	nd RDB PO09 onal data c entity s lodeling ection ar	MS with PO10 abases, I sets, Coo	PO11 1 1 2 2 2 Database dd rules, anguage,	PO12 2 2 3 3 No of lectures [7] [11]
CO4: A d CO/PO CO1 CO2 CO3 CO4 Course Unit I What is Architec Unit II Database relationa	atabases         PO01         3         2         2         3         Content         Database         cture, Database         e design         al         sization(1)         n, joins d	students [K4] PO02 3 3 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	PO03 3 3 3 3 3 3 3 4 3 5 5 5 5 7 7 8 8 7 8 7 8 7 8 7 8 7 8 7 8	PO04 3 3 3 3 3 3 3 5 6 6 7 8 9 10 10 10 10 10 10 10 10 10 10	PO05 1 1 1 1 1 1 abase sys Aanagem ew, cons lational A	es of No PO06 - 1 1 1 1 stem, Vie ent. straint, E to Algebra:	SQL Dat PO07 - - - - ew of dat ERD Issu Unified Introduc	tabases a PO08 ta, Relati ues weak N ction, sel	nd RDB PO09 onal data c entity s lodeling ection ar	MS with PO10 abases, I sets, Coo	PO11 1 1 2 2 2 Database dd rules, anguage,	PO12 2 2 3 3 No of lectures [7] [11]
CO4: A d CO/PO CO1 CO2 CO3 CO4 Course Unit I What is Architec Unit II Database elationa Normali operatio Unit III Fransact	atabases       PO01       3       2       2       3       Content       Database       cture, Database       e design       al       sization(1       on, joins of       tion Mat	students [K4] PO02 3 3 3 3 3 3 4 e System ta Mode and ER schemas, NF,2NF, division, nagemen	PO03 3 3 3 3 3 3 3 4 5 6 7 8 10 10 10 10 10 10 10 10 10 10	PO04 3 3 3 3 3 3 3 3 3 3 3 3 3	PO05 1 1 1 1 1 1 abase sys Aanagem ew, cons fon lational A ingroupin ties, Ser	es of No PO06  - 1 1 1 1 stem, Vie ent. straint, E to Algebra: ng, Relat ializabili	SQL Dat PO07	tabases a PO08 ta, Relati ues weak N ction, sel	nd RDB PO09	MS with PO10 abases, I sets, Coo La nd projec	PO11 1 1 2 2 2 Database dd rules, anguage, ction, set ck based	PO12 2 2 3 3 No of lectures [7] [11]



<b>Unit IV</b> Overview and History of NoSQL Databases, Definition of the Four Types of NoSQL Database, The Value of Relational Databases, Getting at Persistent Data, Concurrency, Integration, The Emergence of NoSQL.	
Text Books:	
[T1] Sadalage, P. J., & Fowler, M. (2013). NoSQL distilled: a brief guide to the emerging world of polyglot persistence. Pearson Education.	of
[T2] Silberschatz, A., Korth, H. F., & Sudarshan, S. (2002). Database system concepts (Vol. 5). N York: McGraw-Hill.	Jew
[T3] Elmasri, R., Navathe, S. B., Elmasri, R., & Navathe, S. B. (2000). Fundamentals of Database	e Systems
Reference Books:	
[R1] Date, C. J. (2004). An Introduction to Database Systems. 8-th ed.	
[R2] Ullman, J. D. (1983). Principles of database systems. Galgotia publications.	

[R3] Bipin C. Desai. (1990). An Introduction to Database Systems. West Publishing Co.



Paper	Code: A	ARO 38	6							L	T/P	Credits
Subjec	et: Intro	duction	to Rol	ootics						3	0	3
Teache End Te	erm The	tinuous l ory Exa	minatio	on: As p	ber univ	ersity ex		on norms		ime to tin ne to tim		-
» The	ere shoul	d be 9 qu	estions	in the er	nd term e	examinat	ion questi	on paper				
≫ Que	estion No	o. 1 shou	ld be co	mpulsor	y and co	over the e	ntire sylla	abus. Thi	s questio	n should h	ave object	ive or short
ans	wer type	questior	ns. It sho	ould be o	of 15 ma	rks.						
≫ Apa	art from	Question	No. 1,	the rest	of the pa	per shall	consist o	of four un	its as per	the syllat	ous. Every	unit should
	-		Howeve	er, stude	nts may	be asked	l to attem	pt only 1	question	from eac	ch unit. Ea	ch question
	uld be 15		1 6			.1 1			<b>c</b> /	(1)	. 1 1/	1 1 6 4
	•			•	U		C		t course/p	paper. The	e standard/	level of the
•						•	scribed te		o apocific	ed if requi	rad	
				·		vel (KL		les may b	e specifie	a II Iequi	ieu.	
	1							abot alo	na with i	its arinne	rs. Furthe	rmore to
CO1				-			presentati		0	its grippe	15. I'urure	
CO2	Ability [ <b>K1,K</b>		idents 1	to utiliz	ze the	differen	tial moti	ion and	velociti	es of ro	bot using	jacobian.
CO3		y of stud d. [ <b>K1,F</b>		use the	dynam	ic analys	sis of for	ces using	g Lagran	gian and	Newtonia	n
<b>CO4</b>	Ability	y of stud	lents to	implem	nent the	online a	nd offlin	e progra	mming o	of robots.	[K3,K4]	
CO/ PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	3	3	3	2	1	-	1	3	1	2
CO2	3	3	3	3	3	1	1	-	2	3	1	2
CO3	3	3	3	3	3	1	1	-	3	3	2	3
<b>CO4</b>	3	3	3	3	3	3	2	-	3	3	2	3
Cours	e Conte	ent	•	•	•	-	- -	•				No of lectures
	amental				0.						cs, Robor peatability	

_____



and accuracy, Degrees of freedom of robots, Robot configurations and concept of workspace, Mechanisms and transmission	
<b>End effectors:</b> Mechanical and other types of grippers, Tools as end effectors, Robot and effector	
interface, Gripper selection and design.	
Sensors and actuators used in robotics: Pneumatic, hydraulic and electrical actuators,	
applications of robots, specifications of different industrial robots	
Unit II	
Kinematics of Robots: Transformation Matrices, Inverse transformation matrices, Forward and	
Inverse kinematic equation for position and orientation, Denavit-Hartenberg representation of	[8]
robot, inverse kinematic solution for articulated robot, Numericals.	[0]
Differential Motions and velocities: Jacobian, Differential motions of a frame, Differential	
motion between frames, Calculation of the Jacobian, Inverse Jacobian, Numericals.	
Unit III	
<b>Dynamic analysis of Force:</b> Lagrangian and Newtonian mechanics, Dynamic equations form	
multiple –DOF Robots, Static force analysis of Robots, Transformation of forces and moments	[8]
between coordinate frames, Numericals.	_
<b>Trajectory Planning:</b> Basics of Trajectory planning, Joint space trajectory planning, Cartesian Space trajectories, Numericals.	
Space trajectories, Numericais.	1
Unit IV	
Unit IV Robot Programming languages & systems: Introduction, the three levels of robot programming,	
Unit IV Robot Programming languages & systems: Introduction, the three levels of robot programming, requirements of a robot programming language, problems peculiar to robot programming	
Unit IV Robot Programming languages & systems: Introduction, the three levels of robot programming, requirements of a robot programming language, problems peculiar to robot programming languages.	[8]
Unit IV Robot Programming languages & systems: Introduction, the three levels of robot programming, requirements of a robot programming language, problems peculiar to robot programming	[8]
Unit IV Robot Programming languages & systems: Introduction, the three levels of robot programming, requirements of a robot programming language, problems peculiar to robot programming languages. Off-line programming systems: Introduction, central issues in on-line and offline programming,	[8]
Unit IV Robot Programming languages & systems: Introduction, the three levels of robot programming, requirements of a robot programming language, problems peculiar to robot programming languages. Off-line programming systems: Introduction, central issues in on-line and offline programming, Programming examples.	[8]
<ul> <li>Unit IV</li> <li>Robot Programming languages &amp; systems: Introduction, the three levels of robot programming, requirements of a robot programming language, problems peculiar to robot programming languages.</li> <li>Off-line programming systems: Introduction, central issues in on-line and offline programming, Programming examples.</li> <li>Application of robots: Typical applications of robots in material transfer, machine</li> </ul>	[8]
<ul> <li>Unit IV</li> <li>Robot Programming languages &amp; systems: Introduction, the three levels of robot programming, requirements of a robot programming language, problems peculiar to robot programming languages.</li> <li>Off-line programming systems: Introduction, central issues in on-line and offline programming, Programming examples.</li> <li>Application of robots: Typical applications of robots in material transfer, machine loading/unloading; processing operations; assembly and inspection.</li> <li>Text Books:</li> <li>[T1] Saha, S. K. (2014). Introduction to robotics. Tata McGraw-Hill Education.</li> </ul>	[8]
<ul> <li>Unit IV</li> <li>Robot Programming languages &amp; systems: Introduction, the three levels of robot programming, requirements of a robot programming language, problems peculiar to robot programming languages.</li> <li>Off-line programming systems: Introduction, central issues in on-line and offline programming, Programming examples.</li> <li>Application of robots: Typical applications of robots in material transfer, machine loading/unloading; processing operations; assembly and inspection.</li> <li>Text Books:</li> <li>[T1] Saha, S. K. (2014). Introduction to robotics. Tata McGraw-Hill Education.</li> <li>[T2] Mittal, R. K., &amp; Nagrath, I. J. (2003). Robotics and control. Tata McGraw-Hill.</li> </ul>	
<ul> <li>Unit IV</li> <li>Robot Programming languages &amp; systems: Introduction, the three levels of robot programming, requirements of a robot programming language, problems peculiar to robot programming languages.</li> <li>Off-line programming systems: Introduction, central issues in on-line and offline programming, Programming examples.</li> <li>Application of robots: Typical applications of robots in material transfer, machine loading/unloading; processing operations; assembly and inspection.</li> <li>Text Books:</li> <li>[T1] Saha, S. K. (2014). Introduction to robotics. Tata McGraw-Hill Education.</li> <li>[T2] Mittal, R. K., &amp; Nagrath, I. J. (2003). Robotics and control. Tata McGraw-Hill.</li> <li>[T3] Fu, K. S., Gonzalez, R., &amp; Lee, C. G. (1987). Robotics: Control Sensing. Vis. Tata McG</li> </ul>	
<ul> <li>Unit IV</li> <li>Robot Programming languages &amp; systems: Introduction, the three levels of robot programming, requirements of a robot programming language, problems peculiar to robot programming languages.</li> <li>Off-line programming systems: Introduction, central issues in on-line and offline programming, Programming examples.</li> <li>Application of robots: Typical applications of robots in material transfer, machine loading/unloading; processing operations; assembly and inspection.</li> <li>Text Books:</li> <li>[T1] Saha, S. K. (2014). Introduction to robotics. Tata McGraw-Hill Education.</li> <li>[T2] Mittal, R. K., &amp; Nagrath, I. J. (2003). Robotics and control. Tata McGraw-Hill.</li> <li>[T3] Fu, K. S., Gonzalez, R., &amp; Lee, C. G. (1987). Robotics: Control Sensing. Vis. Tata McG Education.</li> </ul>	raw-Hill
<ul> <li>Unit IV</li> <li>Robot Programming languages &amp; systems: Introduction, the three levels of robot programming, requirements of a robot programming language, problems peculiar to robot programming languages.</li> <li>Off-line programming systems: Introduction, central issues in on-line and offline programming, Programming examples.</li> <li>Application of robots: Typical applications of robots in material transfer, machine loading/unloading; processing operations; assembly and inspection.</li> <li>Text Books:</li> <li>[T1] Saha, S. K. (2014). Introduction to robotics. Tata McGraw-Hill Education.</li> <li>[T2] Mittal, R. K., &amp; Nagrath, I. J. (2003). Robotics and control. Tata McGraw-Hill.</li> <li>[T3] Fu, K. S., Gonzalez, R., &amp; Lee, C. G. (1987). Robotics: Control Sensing. Vis. Tata McG Education.</li> <li>[T4] Niku, S. B. (2001). Introduction to robotics: analysis, systems, applications (Vol. 7). New</li> </ul>	raw-Hill
<ul> <li>Unit IV</li> <li>Robot Programming languages &amp; systems: Introduction, the three levels of robot programming, requirements of a robot programming language, problems peculiar to robot programming languages.</li> <li>Off-line programming systems: Introduction, central issues in on-line and offline programming, Programming examples.</li> <li>Application of robots: Typical applications of robots in material transfer, machine loading/unloading; processing operations; assembly and inspection.</li> <li>Text Books:</li> <li>[T1] Saha, S. K. (2014). Introduction to robotics. Tata McGraw-Hill Education.</li> <li>[T2] Mittal, R. K., &amp; Nagrath, I. J. (2003). Robotics and control. Tata McGraw-Hill.</li> <li>[T3] Fu, K. S., Gonzalez, R., &amp; Lee, C. G. (1987). Robotics: Control Sensing. Vis. Tata McG Education.</li> <li>[T4] Niku, S. B. (2001). Introduction to robotics: analysis, systems, applications (Vol. 7). New Prentice hall.</li> </ul>	raw-Hill
<ul> <li>Unit IV</li> <li>Robot Programming languages &amp; systems: Introduction, the three levels of robot programming, requirements of a robot programming language, problems peculiar to robot programming languages.</li> <li>Off-line programming systems: Introduction, central issues in on-line and offline programming, Programming examples.</li> <li>Application of robots: Typical applications of robots in material transfer, machine loading/unloading; processing operations; assembly and inspection.</li> <li>Text Books:</li> <li>[T1] Saha, S. K. (2014). Introduction to robotics. Tata McGraw-Hill Education.</li> <li>[T2] Mittal, R. K., &amp; Nagrath, I. J. (2003). Robotics and control. Tata McGraw-Hill.</li> <li>[T3] Fu, K. S., Gonzalez, R., &amp; Lee, C. G. (1987). Robotics: Control Sensing. Vis. Tata McG Education.</li> <li>[T4] Niku, S. B. (2001). Introduction to robotics: analysis, systems, applications (Vol. 7). New Prentice hall.</li> <li>Reference Books:</li> </ul>	raw-Hill
<ul> <li>Unit IV</li> <li>Robot Programming languages &amp; systems: Introduction, the three levels of robot programming, requirements of a robot programming language, problems peculiar to robot programming languages.</li> <li>Off-line programming systems: Introduction, central issues in on-line and offline programming, Programming examples.</li> <li>Application of robots: Typical applications of robots in material transfer, machine loading/unloading; processing operations; assembly and inspection.</li> <li>Text Books:</li> <li>[T1] Saha, S. K. (2014). Introduction to robotics. Tata McGraw-Hill Education.</li> <li>[T2] Mittal, R. K., &amp; Nagrath, I. J. (2003). Robotics and control. Tata McGraw-Hill.</li> <li>[T3] Fu, K. S., Gonzalez, R., &amp; Lee, C. G. (1987). Robotics: Control Sensing. Vis. Tata McG Education.</li> <li>[T4] Niku, S. B. (2001). Introduction to robotics: analysis, systems, applications (Vol. 7). New Prentice hall.</li> </ul>	raw-Hill v Jersey:

[R3] Bhaumik, A. (2018). From AI to robotics: mobile, social, and sentient robots. CRC Press.

_____



#### Paper Code: ARO 471 T/P L Credits **Subject: Software Metrics** 3 0 3 **Marking Scheme:** Teachers Continuous Evaluation: As per university examination norms from time to time. End Term Theory Examination: As per university examination norms from time to time. **INSTRUCTIONS TO PAPER SETTERS: Maximum Marks : As per University norms** > There should be 9 questions in the end term examination question paper > Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. > Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, students may be asked to attempt only 1 question from each unit. > The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks. > The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required **Course Outcomes [Bloom's Knowledge Level (KL)]: CO1:** Understand various fundamentals of measurement and software metrics **CO2** Apply frame work and analysis techniques for software measurement. **CO3:** Apply internal and external attributes of software product for effort estimation. **CO4:** Apply reliability models for predicting software quality CO/PO **PO01 PO02** PO03 **PO04 PO05 PO06** PO07 **PO08 PO09 PO10 PO11** PO12 3 3 1 1 1 1 1 3 1 **CO1** 2 3 2 2 2 3 2 **CO2** 3 3 3 1 3 3 3 3 2 3 2 3 2 3 3 **CO3** 3 3 3 3 3 3 3 3 3 3 3 **CO4** No of **Course Content** lectures Unit I Fundamentals of Measurement and Experimentation: Measurement: What Is It and Why Do It?: Measurement In Software Engineering, Scope Of Software Metrics. The Basics of Measurement: The Representational Theory Of Measurement, Measurement And Models, Measurement Scales And [10] Scale Types, Meaningfulness In Measurement. A goal based framework for software measurement: Classifying Software Measures, Processes And Products, Determining What To Measure, Framework Application, Cost And Effort Estimation. Unit II Empirical Investigation: Principles Of Investigation, Planning Phase For Performing Experiments, [10] Planning Case Studies As Quasi-Experiments, Confirming Theories And Conventional Wisdom, Exploring Relationships, Evaluating The Accuracy Of Prediction Models, Validating Measures .



Planning Formal Experiments Software Metrics Data Collection: Defining Good Data, Data Collection Forms, Data Collection Tools, Reliability Of Data Collection Procedures.	
Unit III	
Analyzing Software Measurement Data: Analyzing the results of experiments, Simple Analysis	
Techniques, More advance methods, Statistical Tests Measuring Internal Product Attributes: Size, Properties Of Software Size, Code Size, Design Size, Requirements Analysis And Specification Size,	[10]
Functional Size Measures And Estimators, Applications Of Size Measures, Problem, Solution Size,	[10]
Computational Complexity Aspects Of Structural Measures, Control Flow Structure Of Program	
Units, Design-Level Attributes, Object-Oriented Structural Attributes And Measures.	
Unit IV	
<b>Measuring external product attributes:</b> Modeling Software Quality, Measuring Aspects of Quality, Usability, Maintainability And Security Measures Making process prediction: Growth Predictions, Implications for process prediction Case Study: Empirical research in software engineering.	[10]
Text Books:	
[T1] Software Metrics A Rigorous and Practical Approach, Norman Fenton, James Bieman, Third	d
Edition, 2014	
Reference Books:	
[R1] Software Metrics A Rigorous and Practical Approach By Norman E. Fenton, Shari Lawrence Pfleeger 1997	2
[R2] Metrics and Models in Software Quality Engineering By Stephen H. Kan 2003	
[R3] Measuring the Software Process Statistical Process Control for Software Process Improvement William A. Florac, Anita D. Carleton 1999	nt By
[R4] Practical Software Metrics for Project Management and Process Improvement By Robert B. C 1992.	Grady



Paper	Code: A	RO 473	}							L	T/P	Credits
Subjec	Subject: Introduction to Electric Vehicles30										3	
Marking Scheme:												
Teachers Continuous Evaluation: As per university examination norms from time to time. End Term Theory Examination: As per university examination norms from time to time.												
		-					m Mark			to time.		
> There should be 9 questions in the end term examination question paper.												
Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or s											e or short	
	wer type						5	1			5	
≫ Apa	urt from (	Question	No. 1, th	e rest of	the pape	er shall co	onsist of f	four units	as per the	e syllabus.	Every u	nit should
hav	e two qu	estions. I	However,	student	s may be	e asked to	o attempt	only 1 q	uestion fro	om each u	unit. Each	n question
sho	uld be 15	marks.					-					-
> The	question	is are to b	be framed	l keeping	g in view	the learn	ning outco	omes of c	ourse/pap	er. The sta	andard/ le	evel of the
que	stions to	be asked	should b	e at the l	evel of t	he prescr	ibed textl	oooks.				
> The	requiren	nent of (s	cientific)	calculat	tors/ log-	tables/ da	ata-tables	may be s	pecified i	f required		
Cours	e Outco	mes [Bl	oom's K	Knowled	lge Lev	el (KL)]	•					
CO1	Ability	of studer	nts to calc	culate the	e capacit	y require	ment of n	notor for a	electric ve	ehicle. [K	2, K3]	
CO2	Ability	of studer	nts to und	erstand	the differ	rent elect	ric vehicl	e architec	tures. [K]	1, K2]		
CO3	Ability	of stude	ents to se	elect and	d compa	are the di	ifferent e	energy sto	orage cel	l availabl	e. <b>[K2,</b> ]	K3]
CO4	Ability <b>K3, K</b> 4		ents to d	esign ai	nd optin	nize the	different	chargin	g stations	s for elec	tric vehi	cle. <b>[K2,</b>
CO/ PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	2	2	2	2	1	-	-	-	2	3
CO2	3	2	2	2	2	2	1	-	-	-	2	3
CO3	3	3	3	3	3	2	1	-	-	-	3	3
CO4	3	3	2	2	3	2	2	-	-	-	3	3
Course	e Conte	nt										No of lectures
Unit I												
					•	-				ompariso		
			-			•				Engine: I	Benefits	
	-								rminolog			[8]
	-							-		ling Res		
	-	•			-	he Acce	leration	Force, Fi	inding th	e Total 7	ractive	
Effort,	Torque	кеquire	u on the	Drive V	v neel							



# Unit II

<b>Electric Vehicle Architecture Design:</b> Types of Electric Vehicle and components, Electrical protection and system requirement, Photovoltaic solar based EV design, Battery Electric vehicle (BEV), Hybrid electric vehicle (HEV), Plug-in hybrid vehicle (PHEV), Fuel cell electric vehicle (FCEV), Electrification Level of EV, Comparison of fuel vs Electric and solar power, Solar Power operated Electric vehicles <b>Electric Drive and controller:</b> Types of Motors, Selection and sizing of Motor, RPM and Torque calculation of motor, Motor Controllers, Component sizing, Physical locations, Mechanical connection of motor, Electrical connection of motor	[8]
Unit III Energy Storage Solutions (ESS): Cell Types (Lead Acid/Li/NiMH), Battery charging and	
discharging calculation, Cell Selection and sizing, Battery lay outing design, Battery Pack Configuration, Battery Pack Construction, Battery selection criteria. <b>Control Unit:</b> Function of CU, Development Process, Software, Hardware, Data Management,	[8]
GUI/HMI	
<b>Electric Vehicles charging station:</b> Type of Charging station, Selection and Sizing of charging station, Components of charging station, Single line diagram of charging station <b>Indian and Global Scenario:</b> Technology Scenario, Market Scenario, Policies and Regulations, Payback and commercial model, Payback and commercial model, policies in India.	[8]
Text Books:	
[T1] Electric Vehicle Technology B P Ganthia, A S Singholi, Scientific International Publication House.	L
[T2] Electric Vehicle Technology by S R Pawar.	
Reference Books:	
<ul><li>[R1] Electric and Hybrid Vehicles A K Babu Khana Publication</li><li>[R2] Electric Vehicles: The Automobiles of the Future by Otto Bischof, Ted Tanaka.</li></ul>	

_____

I



#### T/P Paper Code: ARO 475 L Credits **Subject: Web Development** 3 0 3 **Marking Scheme:** Teachers Continuous Evaluation: As per university examination norms from time to time. End Term Theory Examination: As per university examination norms from time to time. **INSTRUCTIONS TO PAPER SETTERS: Maximum Marks : As per University norms** > There should be 9 questions in the end term examination question paper > Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. > Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, students may be asked to attempt only 1 question from each unit. > The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks. > The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required **Course Outcomes [Bloom's Knowledge Level (KL)]: CO1:** Ability of students to understand the basics of web development and client side scripting. **[K2] CO2:** Ability of students to analyze, design and implement dynamic web pages using a combination of client side and server side scripting. [K3] CO3: Ability of students to design and implement a full scale three tier architecture web application. [K3] **CO4:** Ability of students to analyze requirements and create real time web applications using the latest technology and architectures. [K3, K4] PO01 PO02 **PO03 PO04** PO05 PO09 CO/PO PO06 PO07 **PO08 PO10** PO11 PO12 **CO1** 2 1 3 2 1 3 _ _ _ _ _ **CO2** 3 3 -3 3 3 3 -1 _ _ _ 3 3 3 **CO3** 3 3 3 _ 1 _ _ _ **CO4** 3 3 3 3 3 3 2 3 _ _

# **Course Content**

No of lectures

[8]

#### Unit I

Web Basics and Overview: Introduction to web applications, HTML, Client Side Scripting Vs Server Side Scripting, Web Servers : Local Servers and Remote Servers, Installing Web servers, Internet Information Server (IIS), XAMPP, and NGINX web servers. Static website vs Dynamic website development.

**Client side Scripting:** Introduction to JavaScript: JavaScript language – declaring variables, scope of variables functions, event handlers (on click, on submit etc.), Document Object Model, Form validations. Simple AJAX applications.



Unit II	
<ul> <li>Server Side Scripting: Introduction to PHP: Declaring variables, data types, arrays, strings, operations, expressions, control structures, functions, Reading data from web form controls like Text Boxes, radio buttons, lists etc. Debugging common problems, Warnings and errors, Debugging and troubleshooting.</li> <li>Building Web Pages with PHP: Links and URLs, Using GET and POST values, Encoding for HTML, Including and requiring files, Modifying headers, Page redirection, Output buffering, Working with Forms and Form Data, Building forms, Detecting form submissions, Single-page form processing, Validating form values, Problems with validation logic, Displaying validation errors, Custom validation functions, Single-page form with validations.</li> </ul>	[10]
Unit III Session Management: Working with cookies, Setting cookie values, Reading cookie values, Unsetting cookie values, Working with sessions and its role in developing dynamic web pages. Database Programming using PHP: MySQL Basics, MySQL introduction, Creating a database, Creating a database table, CRUD in MySQL, Populating a MySQL database, Relational database tables, Populating the relational table, Using PHP to Access MySQL, Database APIs in PHP, Connecting to MySQL with PHP, Retrieving data from MySQL, Working with retrieved data, Creating records with PHP, Updating and deleting records with PHP, Introducing prepared statements. Stored Procedure and its interaction with PHP.	[10]
Unit IV PHP and its applications through case study: Introduction to web services, SOAP and REST based web services, parsing and creating XML with PHP, parsing and creating JSON with PHP, Creating PHP web services. A Case study of a test web application through PHP and Stored Procedure and its interaction with PHP.	[8]
<b>Text Books:</b> [T1] Programming PHP. Rasmus Lerdorf, Kevin Tatroe. (O'Reilly, ISBN 1565926102). [T2] PHP: The Complete Reference Steven Holzner TataMcGraw-Hill [T3] PHP and MySQL Web Development, Luke Welling, 5th edition, Pearson	
<ul> <li>Reference Books:</li> <li>[R1] Programming world wide web-Sebesta, Pearson Education,2007</li> <li>[R2] Internet and World Wide Web – How to program by Dietel and Nieto PHI/ Pearson Education</li> <li>[R2] An Introduction to WEB Design and Programming –Wang-Thomson</li> <li>[R3] PHP, MySQL, and JavaScript: A Step-By-Step Guide to Creating Dynamic Websites by Rob O'Reilly Media; 1 edition</li> <li>[R4] Core PHP Programming. Leon Atkinson (Prentice Hall, ISBN 0130463469).</li> </ul>	



Paper	Code: A	ARO 47	7								L	T/P	Credits
Subjec	t: Mod	ern Ma	nufactui	ring Pro	ocesses						3	0	3
Teache End Te	erm The	tinuous l eory Exa	mination	n: As pe	er unive	rsity exa	aminatio	on norms	ns from ti from tin				
INSTI	RUCTI	ONS TO	) PAPE	R SET.	TERS:	Maxim	um Ma	rks: 75					
> There should be 9 questions in the end term examination question paper.													
> (	Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective											ective or	
5	short answer type questions. It should be of 15 marks.												
	-								ur units a	-	•		-
			questions e 15 mar		er, stude	ents may	be aske	d to attem	pt only 1	question	from	n each ui	nit. Each
	•				ning in y	view the	learning	outcomes	s of course	e/paper. ]	The s	tandard	/ level of
	•						C C	ribed textl		· · · · · · ·	~		
	•						•		y be spec	ified if re	quir	ed.	
Cours	e Outco	omes[Bl	oom's K	Inowled	lge Lev	el (KL)	)]:						
CO1		y of stuc sses. [K		understa	and the	basic kn	owledg	e and me	thodolog	y of var	ious	manufa	acturing
CO2		•	udents g process		-		trast th	e advan	tages an	d limita	ation	is of c	lifferent
CO3		•	dents to s age & m		-		0	nique wit	h the aim	of cost	redu	ction, r	educing
CO4			idents to chining c						ting the	product	qua	ulity in	various
CO/ PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	I	PO11	PO12
CO1	2	2	2	2	3	2	-	-	-	-		2	3
CO2	3	3	3	2	3	2	-	-	-	-		2	3
CO3	3	3	3	2	3	2	-	-	-	-		2	3
CO4	3	2	3	2	3	2	-	-	-	-		2	3
eouise content									No of lectures				
Proces	action: a s princt ations c	iple, Ma	aterial re	moval	mechan	ism, Pa	irametri	c analysi	anced ma is, proces lectro dis	ss capab	oiliti	es and	[9]



# Unit II

Introduction: Process principle, Material removal mechanism, Parametric analysis, process capabilities and applications of processes such as Abrasive jet machining (AJM), Water jet machining (WJM), Abrasive Water jet machining (AWJM), Laser beam machining, Electron beam machining (EBM), Ion beam machining (IBM). Electro-chemical machining (ECM).	[9]
Unit III	
Introduction: Process principle, Parametric analysis, process capabilities and applications of processes such as Friction stir welding (FSW), Electron beam welding (EBW), Laser beam	[9]
welding, (LBW), Ultrasonic welding (USW).	
Unit IV	
Introduction: Working principle, process performance, advantages and limitations and	
applications hybrid process such as EC grinding and chemical machining. Details of high energy	[9]
rate forming (HERF) process, Electro-magnetic forming, explosive forming, Electro-hydraulic	
forming, Additive Manufacturing.	
Text Books:	
[T1] Advanced machining process, Dr. V. K. Jain	
[T2] Non-traditional methods of manufacturing, Shah &Pandey	
Reference Books:	
[R1] Manufacturing Processes for Engineering Materials - Kalpakjian S and Steven R Schmid Pe	earson
Publ, 5th Edn.	
[R2] Parmer R.S., Welding Engineering and Technology, Khanna Publishers, 2002,	
ISBN:9788174090287	

-----

1 1



Paper (	Code: AF	RO 479								L	T/P	Credits
Subject	: Person	al Finan	ice							3	0	3
Teacher	<b>g Schem</b> s Continu m Theor	uous Eva		-	-	•						
INSTR	UCTION	NS TO P	APER S	SETTEF	RS: Max	imum N	Iarks: A	s per U	niversity	v norms		
> ( 2 3 4 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Answer typ Apart from have two o	No. 1 sho pe question questions ions are to to be aske rement of <b>es [Bloo</b> nd the m ng. [ <b>K1</b> , he conce the conce	uld be co ons. on No. 1, 1 . Howeve o be fram ed should (scientifi <b>m's Kno</b> eaning a <b>K2</b> ] ept of invest	mpulsory the rest of er, student de keepir be at the ic) calcula <b>owledge</b> and relev vestment ersonal ta	f the pape f the pape ts may be ng in view level of f ators/ log Level (I ance of f planning ax plann	er the enti- er shall co e asked to v the learn the prescri- tables/ d KL)]: financial g and its ing. [K3	ponsist of f attempt of ning outco tibed text ata-tables planning methods ]	ius. This q four units only 1 que omes of c books. g may be s g, time va g, time va s. [ <b>K2</b> ]	as per the estion fro ourse/paj specified alue of n	e syllabus m each u per. The s if require	. Every u nit. tandard/ d	ve or short nit should level of the of
CO/ PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	2	2	2	2	3	2	-	-	-	-	2	3
CO2	3	3	3	2	3	2	-	-	-	-	2	3
CO3	3	3	3	2	3	2	-	-	-	-	2	3
CO4	3	2	3	2	3	2	-	-	-	-	2	3
Course	Content											No of lectures
planning savings, digital v	g, person benefits vallets, sourd clonir	al finand of savin ecurity a	ce/loans, ags, mana and preca	educati agement autions a	on loan, of spen	car loan ding & f	n & hon inancial	ne loan s disciplin	schemes. e, Net b	Introdu anking a	ction of nd UPI,	
	<b>ent plar</b> various											[8]

Approved by BoS of USAR : 15/06/2023, Approved by Applicable from Batch Admitted in Academic Session 2021-22 Onwards



formation. Real estate, financial derivatives & Commodity market in India. Mutual fund schemes including SIP.						
Unit III: Personal Tax Planning: Tax Structure in India for personal taxation, Steps of Personal tax	[12]					
planning, Exemptions and deductions for individuals, tax avoidance versus tax evasion.	[12]					
Unit IV:						
<b>Insurance Planning and Retirement Planning:</b> Need for Protection planning. Risk of mortality, health, disability and property. Importance of Insurance: life and non-life insurance schemes. Retirement Planning Goals, Process of retirement planning, Pension plans available in India, Reverse mortgage, New Pension Scheme.	[12]					
Text Books:						
<ul> <li>[T1] Introduction to Financial Planning (4th Edition 2017) — Indian Institute of Banking &amp; Finan</li> <li>[T2] Sinha, Madhu. Financial Planning. A Ready Reckoner July 2017, McGraw Hill.</li> </ul>	ce.					
Reference Books:						
[R1] Halan, Monika. Lets Talk Money: You've Worked Hard for It, Now Make It Work for You July 20						
Harper Business.						
[R2] Pandit, Amar The Only Financial Planning Book that You Will Ever Need, Network 18 Publications Ltd.						



Paper	Code: A	ARO 482	1							Ι	L T/P	Credits
Subjec	t: Auto	motive ]	Enginee	ering							0	3
Marking Scheme: Teachers Continuous Evaluation: As per university examination norms from time to time. End Term Theory Examination: As per university examination norms from time to time.												
		$\frac{1}{0}$		-		sity exam					niversity	norms
						xaminati				As per u	mversity	norms
<ul> <li>There should be 9 questions in the end term examination question paper.</li> <li>Question No. 1 should be compulsory and cover the entire syllabus. This question should have object</li> </ul>											ive or short	
_		be questic					une syna	Jus. 11115	question	Should II		
		•					consist of	four unit	s as per f	he svllab	us. Everv	unit should
		-							•	•	•	ch question
		15 marks		,	2		Ĩ	2	1			1
> Th	ne questi	ions are t	o be frai	ned keep	ing in vi	ew the le	earning o	utcomes	of course	e/paper. Т	'he standa	rd/ level of
th	e questio	ons to be	asked sh	ould be a	t the leve	el of the j	prescribe	d textboo	ks.			
> Tł	ne requir	ement of	(scientif	fic) calcu	lators/ lo	g-tables/	data-tabl	es may b	e specifie	ed if requ	ired.	
Course	e Outco	mes [Bl	oom's F	Knowled	lge Leve	el (KL)]	•					
CO1	-	y of stud ions, <b>[K</b> 2			e the po	wer req	uirement	of a ve	hicle ur	nder diff	erent ope	rating
CO2	Ability [ <b>K2, F</b>		ents to	understa	and the v	various o	compone	nts of au	ıtomobi	le transn	nission sy	/stem.
CO3	Ability	y of stud	ents to u	understa	nd the v	arious co	omponer	ts of aut	omobile	e control	system.	[K1, K2]
<b>CO4</b>	Ability	y of stud	ents to u	understa	nd the b	asic com	ponents	of the g	reen veh	nicles. [K	K1, K2]	
CO/ PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	3	2	3	2	2	-	-	-	3	3
CO2	3	3	3	2	3	2	1	-	-	-	3	3
CO3	3	3	3	2	3	2	1	-	-	-	3	3
CO4	2	2	2	2	3	3	3	-	-	-	3	3
Course Content									No of lectures			
<ul> <li>Unit I</li> <li>Introduction: Conventional motor vehicle, vehicle classification, frame and frameless construction, vehicle dimensions,</li> <li>Power Source: IC Engine (diesel, petrol and CNG), Electric Power source, Hybrid engine, Solar powered engine</li> <li>Emission control devices: Catalytic convertor and its types, EGR.</li> </ul>										[8]		

Approved by BoS of USAR : 15/06/2023, Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Approved by AC sub-committee : 04/07/2023



<b>Clutch:</b> Clutch Fundamentals, Different type of clutches, Torque transmitted through clutch, Energy lost during engagement, Energy dissipated due to clutch slippage. <b>Transmission:</b> Requirements for manual and automatic transmission, their type and constructional detail.	[8]					
Unit III						
<ul> <li>Steering and Suspension: Steering mechanisms and steering system including power steering, turning radius calculation, Steering gear ratio, Forward and reverse efficiency of steering gear, Inertia torque effecting steering, suspension principle, rigid axle suspension and independent suspension, Mechanics of an independent suspension system.</li> <li>Drive Line: Introduction to driveline components, Critical speed of Propeller shaft, speed variations of Hooke Joint, differential gear ratio.</li> </ul>	[9]					
Unit IV						
<ul> <li>Braking System: Introduction to braking system and their types, stopping distance, Work done in braking and braking efficiency, ABS.</li> <li>Wheel and Tyres: Disc pressed wheels, static and dynamic balancing of wheels, types and manufacturing, tubed and tubeless tyres, radial tyres, tyre specifications and coding.</li> <li>Electric Vehicle: Introduction, Types of Electric Vehicle. Components of electric vehicles.</li> </ul>	[9]					
Text Books:						
<ul> <li>[T1] Giri, N. K., Automobile Mechanics, Khanna Publishers, New Delhi (2011).</li> <li>[T2] Hiller, V. A. W., Fundamentals of Motor Vehicle Technology, Nelson Thornes, UK (2012).</li> <li>Garrett, T. K., Newton, K. and Steeds, W., The Motor Vehicle, Butterworth-Heinemann, Britain, London (2001).</li> </ul>						
Reference Books:						
<ul> <li>[R1] Norton, A. A., Book of the Car, Automobile Association, London (1977).</li> <li>[R2] Heinz, H., Advance Vehicle Technology, Arnold Publishers, Butterworth-Heinemann, Lon (1999).</li> <li>[R3] Crouse, W. and Anglin, D., Automotive Mechanics, Tata McGraw Hill, New Delhi (2006).</li> </ul>						

[R4] Heinz, H, Engine and Vehicle Technology, Arnold Publishers, Butterworth-Heinemann, London (2002).

-----

I



Paper	Code: AF	RO 483								L	T/P	Credits
Subjec	Subject: Smart Materials: Introduction & Applications30									3		
Marking Scheme: Teachers Continuous Evaluation: As per university examination norms from time to time. End Term Theory Examination: As per university examination norms from time to time.												
INSTR	RUCTION	IS TO	PAPER	SETTE	RS: N	Maximu	ım Mar	ks: As p	er univer	sity nor	ms	
≫	There should be 9 questions in the end term examination question paper											
≫	Question 1	No. 1 sł	nould be	compul	sory and	l cover t	he entire	e syllabu	s. This qu	estion sl	nould ha	ive
ol	bjective or	short a	nswer t	ype ques	tions. It	should	be of 15	marks.				
	Apart from	-								-	•	•
	nit should		-			students	may be	asked to	attempt o	only 1 qu	estion f	rom each
	nit. Each c	•				wigner th	a laami	na outoo	magafaa		or The	aton dand/
	The quest				1 0			0			er. The	standard/
	The requir	1						-			if requir	ed
	e Outcom			,		e					ii iequii	cu.
COII st	Ability o	-			0			materia	s & struc	tures []	K1. K2	
CO2:	-										-	
02:	Ability of modern a					the pie	ZUEIECUI		ut porym	ers and	utilize t	
CO3:					-		•			o rheolo	gical &	magneto
<u> </u>	rheologic						-			<u></u>		
CO4:	Ability of engineer					ndamen	itals of	fiber op	tics and	Biomin	netics in	n various
CO/ PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	2	2	2	2	-	-	-	3	1	2	3
CO2	3	2	2	2	2	-	-	-	3	1	2	3
CO3	3	2	2	2	3	-	-	-	3	1	3	3
CO4	3	2	2	2	3	-	-	-	3	1	3	3
Course Content									No of lectures			
Structu	uction: C ares and P a, Applicat	roducts	Techno	logies. (	· •							[9]



<ul> <li>Processing of Smart Materials: Semiconductors and their processing, Metals and metallization techniques, Ceramics and their processing, Polymers and their synthesis, UV radiation curing of polymers.</li> <li>Advances in smart structures &amp; materials: Self-Sensing Piezoelectric Transducers, Energy Harvesting Materials, Autophagous Materials, Self- Healing Polymers, Intelligent System Design, Emergent System Design</li> </ul>	
<ul> <li>Unit II</li> <li>Piezoelectric Materials: Introduction, Cantilever Piezoelectric actuator model, Properties of Piezoelectric materials, Applications. Magnetic Actuation: Concepts and Principles, Magnetization and Nomenclatures, Fabrication and case studies, Comparison of major sensing and actuation methods.</li> <li>Active Smart Polymer: Polymers in MEMS– Polimide - SU-8 - Liquid Crystal Polymer (LCP) – PDMS – PMMA – Parylene– Fluorocarbon Electro-strictive Materials, Magneto-strictive Materials, Magneto electric Materials</li> </ul>	[9]
<ul> <li>Unit III</li> <li>Shape Memory Alloys: Introduction, Phenomenology, Influence of stress on characteristic temperatures, Modelling of shape memory effect. Vibration control through shape memory alloys. Design considerations, multiplexing embedded NiTiNOL actuators.</li> <li>Electro rheological and Magneto rheological Fluids: Mechanisms and Properties, Characteristics, Fluid composition and behaviour, Discovery and Early developments, Summary of material properties. Applications of ER and MR fluids (Clutches, Dampers, others).</li> </ul>	[9]
<ul> <li>Unit IV</li> <li>Fiber Optics: Introduction, Physical Phenomenon, Characteristics, Fibre optic strain sensors, Twisted and Braided Fibre Optic sensors, Optical fibres as load bearing elements, Crack detection applications, Integration of Fibre optic sensors and shape memory elements.</li> <li>Biomimetics: Characteristics of Natural structures. Fibre reinforced: organic matrix natural composites, Natural creamers, Molluscs. Biomimetic sensing, Challenges and opportunities.</li> </ul>	[9]
<ul> <li>Text Books:</li> <li>[T1] Smart Materials and Structures, M.V.Gandhi and B.S.Thompson Chapmen &amp; Hall, Londo (ISBN:0412370107)</li> <li>[T2] Smart Structures, Analysis and Design by A V Srinivasan and D M McFarland</li> <li>[T3] Brian Culshaw, Smart Structures and Materials, Artech House, 2000</li> </ul>	on, 1992
Reference Books: [R1] Gauenzi, P., Smart Structures, Wiley, 2009 [R2] Cady, W. G., Piezoelectricity, Dover Publication [R3] Shape Memory Materials By Arun D. I., P Chakravarthy	

_____



Paper C	Code: AF	RO 485								L	T/P	Credits
Subject: Cloud, Dew, Edge and Fog [CDEF] Computing												
,	· · · · ·	1	uge anu	rug [C	DEFJC	ompum	Ig			3	0	3
Marking Scheme: Teachers Continuous Evaluation: As per university examination norms from time to time. End Term Theory Examination: As per university examination norms from time to time.												
INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: As per university norms												
> There should be 9 questions in the end term examination question paper												
≻ Qu	estion N	o. 1 shou	uld be co	mpulsor	y and co	ver the e	entire syl	labus. T	his quest	tion shou	uld have	objective
	hort ansy	• 1	-									
	-									-	-	us. Every
unit		have two	o questio	ons. Hov	vever, st	udents n	hay be as	sked to a	ittempt o	only I qu	lestion I	rom each
		ons are f	to be fra	med kee	ning in v	view the	learning	outcom	nes of co	urse/par	er. The	standard/
	el of the						-	-				biuniunui u
≻ Th	e require	ement of	(scienti	fic) calc	ulators/	log-table	es/ data-t	ables ma	ay be spe	ecified if	f require	d
CO2: To CO3 : T CO4: To CO/	o Analy o Apply	<b>ze</b> the di the MiC	fferent 7 EF Con-	Threats, cepts to	Vulneral Create	bilities a Cloud Co	nd Attac omputin	ks in Cl g Proble	oud com ms and s	puting I solve the	Domain. em. <b>[K3,</b>	[K4] K6]
PO	PO01	PO02	PO03	PO04	PO05	<b>PO06</b>	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	3	3	2	3	3	3	3	2	2	3
<b>CO2</b>	3	3	3	3	2	3	3	3	1	3	3	3
CO3	3	3	3	3	2	1	3	3	3	2	1	3
<b>CO4</b>	3	3	3	3	2	2	1	1	1	3	2	3
Course	Content	;										No of lectures
<b>Unit I</b> Introduction to Cloud Computing, Definition, Characteristics, Components, Cloud Service provider, Software As a Service(SAAS), Platform As a Service(PAAS), Infrastructure as a Service(IAAS) and Others, Load balancing and Resource optimization. Comparison among Cloud computing platforms: Amazon EC2, Platform as Service: Google App Engine, Microsoft Azure, Meghraj etc									[10]			
<b>Unit II</b> Introduc and RES			-			-			-			



technology, virtualization applications in enterprises, Pitfalls of virtualization, Multi-entity support, Multi-schema approach, Multi-tenancy using cloud data stores.	
<b>Unit III</b> Cloud security fundamentals, Vulnerability assessment tool for cloud, Privacy and Security in cloud, Cloud computing security architecture, Issues in cloud computing, Issues in Intercloud	[12]
environments, QoS Issues in Cloud, Streaming in Cloud. Quality of Service (QoS) monitoring in a Cloud computing environment, Inter Cloud issues.	[12]
Unit IV	
MICEF Computing(Mist, IOT, Cloud, Edge and FOG Computing), Dew Computing : Concept and	
Application;	[8]
Case Study: Design and Development of MiCEF Computing Programs using Free and Open Source	
Software such as : CloudSim and iFogSim	
Text Books:	
[T1] Cloud Computing Bible : Barrie Sosinsky, Wiley India, 2011	
[T2] Cloud Computing : Principles and Paradigms Paperback, Rajkumar Buyya, James Broberg	, Andrzej
Goscinski, John Wiley & Sons, 2011	
[T3] Cloud Computing Black Book : Kailash Jayaswal, Jagannath Kallakurchi, Donald J. Houd	e, Deven
Shah, Dreamtech Press, 2014	
Reference Books:	
[R1] Cloud Computing : A Practical Approach, Toby Velte, Anthony Velte, Robert E	lsenpeter
McGrawHill, 2017	
[R2] Cloud Computing : A Complete Guide, Gerardus Blokdyk, 5 Starcooks, 2019.	



Subject: Social Media Analytics       3       0         Marking Scheme:       Teachers Continuous Evaluation: As per university examination norms from time to time.         End Term Theory Examination: As per university examination norms from time to time.         INSTRUCTIONS TO PAPER SETTERS: Maximum Marks : As per University norms         ➤ There should be 9 questions in the end term examination question paper         ➤ Question No. 1 should be compulsory and cover the entire syllabus. This question should have objet answer type questions.         ➤ Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Ever have two questions. However, students may be asked to attempt only 1 question from each unit.         ➤ The questions are to be framed keeping in view the learning outcomes of course/paper. The standar questions to be asked should be at the level of the prescribed textbooks.         ➤ The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required         Course Outcomes [Bloom's Knowledge Level (KL)]:         CO1: Ability of students to understand the concept of social media analytics and understand its sig	y unit should d/ level of th
<ul> <li>Teachers Continuous Evaluation: As per university examination norms from time to time.</li> <li>End Term Theory Examination: As per university examination norms from time to time.</li> <li>INSTRUCTIONS TO PAPER SETTERS: Maximum Marks : As per University norms</li> <li>&gt; There should be 9 questions in the end term examination question paper</li> <li>&gt; Question No. 1 should be compulsory and cover the entire syllabus. This question should have objet answer type questions.</li> <li>&gt; Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Ever have two questions. However, students may be asked to attempt only 1 question from each unit.</li> <li>&gt; The questions are to be framed keeping in view the learning outcomes of course/paper. The standar questions to be asked should be at the level of the prescribed textbooks.</li> <li>&gt; The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required</li> <li>Course Outcomes [Bloom's Knowledge Level (KL)]:</li> <li>CO1: Ability of students to understand the concept of social media analytics and understand its signature.</li> </ul>	y unit should d/ level of th
<ul> <li>End Term Theory Examination: As per university examination norms from time to time.</li> <li>INSTRUCTIONS TO PAPER SETTERS: Maximum Marks : As per University norms</li> <li>There should be 9 questions in the end term examination question paper</li> <li>Question No. 1 should be compulsory and cover the entire syllabus. This question should have objet answer type questions.</li> <li>Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Ever have two questions. However, students may be asked to attempt only 1 question from each unit.</li> <li>The questions are to be framed keeping in view the learning outcomes of course/paper. The standar questions to be asked should be at the level of the prescribed textbooks.</li> <li>The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required</li> <li>Course Outcomes [Bloom's Knowledge Level (KL)]:</li> <li>CO1: Ability of students to understand the concept of social media analytics and understand its signature.</li> </ul>	y unit should d/ level of th
<ul> <li>NSTRUCTIONS TO PAPER SETTERS: Maximum Marks : As per University norms</li> <li>There should be 9 questions in the end term examination question paper</li> <li>Question No. 1 should be compulsory and cover the entire syllabus. This question should have objet answer type questions.</li> <li>Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Ever have two questions. However, students may be asked to attempt only 1 question from each unit.</li> <li>The questions are to be framed keeping in view the learning outcomes of course/paper. The standar questions to be asked should be at the level of the prescribed textbooks.</li> <li>The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required</li> <li>Course Outcomes [Bloom's Knowledge Level (KL)]:</li> <li>CO1: Ability of students to understand the concept of social media analytics and understand its signature.</li> </ul>	y unit should d/ level of th
<ul> <li>There should be 9 questions in the end term examination question paper</li> <li>Question No. 1 should be compulsory and cover the entire syllabus. This question should have objet answer type questions.</li> <li>Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Ever have two questions. However, students may be asked to attempt only 1 question from each unit.</li> <li>The questions are to be framed keeping in view the learning outcomes of course/paper. The standar questions to be asked should be at the level of the prescribed textbooks.</li> <li>The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required</li> <li>Course Outcomes [Bloom's Knowledge Level (KL)]:</li> <li>CO1: Ability of students to understand the concept of social media analytics and understand its signature.</li> </ul>	y unit should d/ level of th
<ul> <li>Question No. 1 should be compulsory and cover the entire syllabus. This question should have objet answer type questions.</li> <li>Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Ever have two questions. However, students may be asked to attempt only 1 question from each unit.</li> <li>The questions are to be framed keeping in view the learning outcomes of course/paper. The standar questions to be asked should be at the level of the prescribed textbooks.</li> <li>The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required</li> <li>Course Outcomes [Bloom's Knowledge Level (KL)]:</li> <li>CO1: Ability of students to understand the concept of social media analytics and understand its signature.</li> </ul>	y unit should d/ level of th
<ul> <li>answer type questions.</li> <li>&gt; Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Ever have two questions. However, students may be asked to attempt only 1 question from each unit.</li> <li>&gt; The questions are to be framed keeping in view the learning outcomes of course/paper. The standar questions to be asked should be at the level of the prescribed textbooks.</li> <li>&gt; The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required</li> <li>Course Outcomes [Bloom's Knowledge Level (KL)]:</li> <li>CO1: Ability of students to understand the concept of social media analytics and understand its signature.</li> </ul>	y unit should d/ level of th
<ul> <li>Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Ever have two questions. However, students may be asked to attempt only 1 question from each unit.</li> <li>The questions are to be framed keeping in view the learning outcomes of course/paper. The standar questions to be asked should be at the level of the prescribed textbooks.</li> <li>The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required</li> <li>Course Outcomes [Bloom's Knowledge Level (KL)]:</li> <li>CO1: Ability of students to understand the concept of social media analytics and understand its signal.</li> </ul>	d/ level of th
<ul> <li>The questions are to be framed keeping in view the learning outcomes of course/paper. The standar questions to be asked should be at the level of the prescribed textbooks.</li> <li>The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required</li> <li>Course Outcomes [Bloom's Knowledge Level (KL)]:</li> <li>CO1: Ability of students to understand the concept of social media analytics and understand its signal.</li> </ul>	
<ul> <li>questions to be asked should be at the level of the prescribed textbooks.</li> <li>➤ The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required</li> <li>Course Outcomes [Bloom's Knowledge Level (KL)]:</li> <li>CO1: Ability of students to understand the concept of social media analytics and understand its signal.</li> </ul>	
<ul> <li>The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required</li> <li>Course Outcomes [Bloom's Knowledge Level (KL)]:</li> <li>CO1: Ability of students to understand the concept of social media analytics and understand its signal.</li> </ul>	mificance
Course Outcomes [Bloom's Knowledge Level (KL)]: CO1: Ability of students to understand the concept of social media analytics and understand its sig	mificance
CO1: Ability of students to understand the concept of social media analytics and understand its sig	mificance
<ul> <li>CO2: Ability of students to develop skills required for analyzing the effectiveness of social media</li> <li>CO3: Ability of students to use different tools of social media analytics. [K2, K3]</li> <li>CO4: Ability of students to acquire the fundamental perspectives and hands-on skills needed to we be be be be been been been been been</li></ul>	
CO/PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO1	1 PO12
CO1         3         3         3         3         2         1         1         1         2         1	2
CO2         2         3         3         3         2         1         1         1         2         1	2
CO3         2         3         3         3         2         1         1         1         2         2	3
CO4         3         3         3         3         2         1         1         1         1         2	3
Course Content	No of lectures
Unit I	
Social Media Analytics: Introduction Core Characteristics of Social Media, Types of Social Med	ia,

Seven Layers of Social Media Analytics, Types of Social Media Analytics, Social Media Analytics Cycle, Challenges to Social Media Analytics, Social Media Analytics Tools



Unit II	
Social Network Structure, Measures & Visualization: Basics of Social Network Structure - Nodes,	
Edges & Tie Describing the Networks Measures - Degree Distribution, Density, Connectivity,	
Centralization, Tie Strength & Trust Network Visualization - Graph Layout, Visualizing Network	
features, Scale Issues.	[9]
Social Media Network Analytics - Common Network Terms, Common Social Media Network	
Types, Types of Networks, Common Network Terminologies, Network Analytics Tools	
Social Media Text Analytics - Types of Social Media Text, Purpose of Text Analytics, Steps in Text	
Analytics, Social Media Text Analysis Tools.	
Unit III	
Social Media Action Analytics - What Is Actions Analytics? Common Social Media Actions,	
Actions Analytics Tools.	
Social Media Hyperlink Analytics - Types of Hyperlinks, Types of Hyperlink Analytics, Hyperlink	
Analytics Tools.	[8]
Social Media Location & Search Engine Analytics : Location Analytics - Sources of Location Data,	
Categories of Location Analytics, Location Analytics and Privacy Concerns, Location Analytics	
Tools Search Engine Analytics - Types of Search Engines, Search Engine	
Analytics, Search Engine Analytics Tools.	
Unit IV	
Social Information Filtering : Social Information Filtering - Social Sharing and filtering ,	
Automated Recommendation systems, Traditional Vs social Recommendation Systems	[8]
Understanding Social Media and Business Alignment, Social Media KPI, Formulating a Social	
Media Strategy, Managing Social Media Risks	
Text Books:	
[T1] F Khan, Gohar. SEVEN LAYERS OF SOCIAL MEDIA ANALYTICS Mining Business Ins	sights
from Social Media Text, Actions, Networks, Hyperlinks, Apps, Search Engine, and Location	-
Gohar F. Khan, 2015.	
[T2] Russell, Matthew A. Mining the social web: Analyzing data from Facebook, Twitter, Linked	In, and
other social media sites. " O'Reilly Media, Inc.", 2011.	
Reference Books:	
[R1] Russell, Matthew A. Mining the social web: Analyzing data from Facebook, Twitter, Linked	lIn, and
other social media sites. " O'Reilly Media, Inc.", 2011.	



Paper (	Code: Al	RO 489								L	T/P	Credits
Subject: Natural Language Processing 3										0	3	
Feacher		uous Ev		-		y examin examina					•	
INSTR	UCTIO	NS TO I	PAPER	SETTE	RS: Max	kimum N	Aarks :	AS per U	U <b>niversi</b>	ty norm	S	
<ul> <li>There should be 9 questions in the end term examination question paper</li> <li>Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective short answer type questions.</li> <li>Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit have two questions. However, students may be asked to attempt only 1 question from each unit.</li> <li>The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/lever the questions to be asked should be at the level of the prescribed textbooks.</li> <li>The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required</li> <li>Course Outcomes [Bloom's Knowledge Level (KL)]:</li> <li>CO1: To Understand the different text analytics techniques. [K2]</li> <li>CO2: To Understand the role of Text classification Techniques and analyze the working of Hidden I Model. [K1, K4]</li> <li>CO3: To Understand and Analyze the working of the NLP with ANN. [K2, K4]</li> <li>CO4: To Apply the concepts of BlockChain to Create own Smart Contract and to design a BlockChain to Cryptocurrency information. [K3, K6]</li> </ul>											unit should level of en Marko	
CO/ PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	3	3	2	3	3	3	3	2	2	3
CO2	3	3	3	3	2	3	3	3	1	3	3	3
CO3	3	3	3	3	2	1	3	3	3	2	1	3
CO4	3	3	3	3	2	2	1	1	1	3	2	3
Course Content										No of lectures		
system, expressi	Knowle	edge of a	language	e, Modes	s of lang	language guage: s	poken a	nd writte	en, Lang	guage sy	stem as	[14]

Meaning in Language Analysis, Levels of Linguistics: What is Language Analysis?, Form, Function and Meaning in Language Analysis, Levels of Linguistic Analysis: Phonetics, Phonology, Morphology, Syntax, Semantics, Discourse, Pragmatics, Lexicology



Shallow Parsing and Tools for NLP: Morphological Analysis, Tokenization & PoS Tagging, Chunking & Multi word expression (MWE), Named-Entity Recognition, Lemmatizer & Stemming, Morphological Synthesis Deep Parsing and Tools for NLP: Syntactic Parsing Techniques and algorithms, Semantic Parsing, Information Extraction, Automatic Summarization, Anaphora Resolution, Pragmatics and Discourse analysis								
Unit II								
Text Classification: Bag of words representation. Vector space model and cosine similarity. Relevance feedback and Rocchio algorithm. Versions of nearest neighbor and Naive Bayes for text, Text Classification Using Support Vector Machine (SVM), Statistical Parsing.	[8]							
Unit III								
NLP with ANN: Issues in using ANN with text, understanding word and sentence embedding, Introduction to NLTK, Binary encoding, TF, TF-IDF encoding, Latent Semantic analysis encoding, Latent Dirichlet Allocation, Word2Vec models (Skip-gram, CBOW, Glove, one hot Encoding), Sequence-to-sequence models (Seq2Seq) - GloVe: Global Vectors for Word Representation	[8]							
Unit IV								
Speech Processing: Articulatory Phonetics, Speech Sounds and Phonetic Transcription, Acoustic Phonetics, Phonology, Computational Phonology, Automatic Speech Recognition (ASR), Speech Recognition Approaches, Text to Speech (TTS) system, Speech Synthesis Approaches	[8]							
Text Books:								
<ul><li>[T1] Bird S, Klein E, Loper E. Natural language processing with Python: analyzing text with the n language toolkit. " O'Reilly Media, Inc."; 2009.</li><li>[T2] Thanaki J. Python natural language processing. Packt Publishing Ltd; 2017.</li></ul>	atural							
Reference Books:								
[R1] Hardeniya N, Perkins J, Chopra D, Joshi N, Mathur I. Natural language processing: python an NLTK. Packt Publishing Ltd; 2016.	nd							
[R2] Srinivasa-Desikan B. Natural Language Processing and Computational Linguistics: A practical guide to text analysis with Python, Gensim, spaCy, and Keras. Packt Publishing Ltd; 2018.								



# DETAILED SYLLABUS FOR NUES COURSES: AIDS/ AIML/ IIOT/ AR



	214 (AII	DS & AI R & 1107								L	T/P	Credits
Subject: Engineering Economics20												2
Teacher		nuous Ev		-		•				ode from		
INSTR	UCTIO	NS TO	PAPER	SETTE	RS: Ma	ximum I	Marks :	As per <b>l</b>	U <b>niversi</b>	ty norm	s	
<ul> <li>Question No. 1 should be compulsory and cover the entire syllabus. This question should have objecti short answer type questions.</li> <li>Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every u have two questions. However, students may be asked to attempt only 1 question from each unit.</li> <li>The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/1 the questions to be asked should be at the level of the prescribed textbooks.</li> <li>The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required</li> <li>Course Outcomes [Bloom's Knowledge Level (KL)]:</li> <li>CO1: Ability to do understand economic analysis. [K1, K2]</li> <li>CO2: Ability to understand and use cash flow method. [K1, K2]</li> </ul>												
	bility to				of an as and infl PO05		-			PO10	PO11	PO12
CO1	-	1 002	-	-	1	2	3	-	-	-	3	1
CO2	_	1	_	_	1	2	3	-	-	_	3	1
CO3	-	1	-	-	1	2	3	-	-	-	3	1
CO4	-	1	-	-	1	2	3	-	-	-	3	1
Course Content								No. of Lectures				
Elemen	ts of Co	st, Break		Analysis,				-	-	ering Eco analysis,		1 101
CostDo	Worth minated	Cash Fl	ow Diag	ram Fut	ure Wort	h Metho	d: Introd	uction, I	Revenue	1 Flow I Domina od: Intro	ted Cash	[0]



Payanya Dominated Cash Flow Diagram, Cast Dominated Cash Flow Diagram, Alternate approach				
Revenue Dominated Cash Flow Diagram, Cost-Dominated Cash Flow Diagram, Alternate approach. Rate of Return Method.				
<b>Unit III</b> Replacement and Maintenance Analysis: Introduction, Types, Determination of economic life of an asset, replacement method. Depreciation: Introduction and methods of depreciation (Straight line, Declining Balance, Sum of the Years Digit method, Sinking fund method, Service output method). Evaluation of public alternative.	[6]			
<b>Unit IV</b> Inflation Adjustment: Introduction, Procedure to adjust Inflation, Inflation Adjusted Economic Life of Machines. Inventory Control and Methods, Make or buy decision, Project Management: Introduction, Phases, CPM, Gantt/Time Chart, PERT. Value Analysis / Value Engineering	[6]			
Text Books:				
[T1] R. Paneerselvam, "Engineering Economics", PHI Learning, New Delhi, 2012.				
Reference Books:				
<ul> <li>[R1] David L. Whitman, Ronald E. Terry, Fundamentals of Engineering Economics and Decision Analysis, Morgan &amp; Claypool Publishers (2012).</li> <li>[R2] John A. White, Kellie Grasman, Fundamentals of Engineering Economic Analysis, Wiley (2)</li> <li>[R3] Leland Blank, Antony Tarquin, Engineering Economy, McGraw Hill, 2002</li> <li>[R4] K. L. Sharma, An Introduction to Engineering Economics, Momentum Press, 2015.</li> <li>[R5] Chan S. Park, Fundamentals of Engineering Economics, Global Edition-Pearson, (2019).</li> <li>[R6] Zahid A. Khan, Arshad N. Siddiquee, Brajesh Kumar, Mustufa H. Abidi, Principles of Engineering</li> </ul>	2013).			

Economics with Applications, Cambridge University Press (2018).



	Code: 211 (AI 214 (A									L	T/P	Credits
	Subject: Accountancy for Engineers 2 0											
Marking Scheme: Teachers Continuous Evaluation: As per university examination norms in NUES mode from time to End Term Theory Examination: As per university examination norms in NUES mode from time to ti												
INSTRUCTIONS TO PAPER SETTERS: Maximum Marks : AS per University norms												
<ul> <li>There should be 9 questions in the end term examination question paper</li> <li>Question No. 1 should be compulsory and cover the entire syllabus. This question should have objectir short answer type questions.</li> <li>Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every u have two questions. However, students may be asked to attempt only 1 question from each unit.</li> <li>The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/1 the questions to be asked should be at the level of the prescribed textbooks.</li> <li>The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required</li> <li>Course Outcomes [Bloom's Knowledge Level (KL)]:</li> <li>CO1: Understand the principles of accountancy [K1, K2].</li> <li>CO2: Ability to understand journal entry, preparation of balance sheet and trial balance [K1, K2].</li> </ul>										unit should		
CO/	Ability to PO01	o model PO02	depreci PO03	ation [ <b>k</b> PO04	2]. PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
PO CO1	_	_	_	_	_	-	2	2	2	_	3	2
CO2	_	-	-	-	-	-	2	2	2	-	3	2
CO3	-	-	-	-	-	-	2	2	2	-	3	2
CO4	-	-	-	-	-	-	2	2	2	-	3	2
Course Content									No. of Lectures			
<b>Unit I:</b> Objectives and Nature of Accounting, Definitions and Functions of Accounting, Bookkeeping and Accounting, Interrelationship of Accounting with other Disciplines, Branches, Limitation. Accounting Principles, Accounting Concepts and Conventions.									[6]			
Unit II: Journal entries, Compound Journal Entries, Opening Entry, Ledger Posting and Trial Balance, Preparation of Ledger, Posting, Cash Book, Sales and Purchase Book and trial Balance.											[6]	



<b>Unit III:</b> Preparation of Final Accounts with Adjustment, Trading Account, Profit and Loss Account, Balance Sheet. Green Accounting, Social Responsibility Accounting, Accounting ethics	[6]
<b>Unit IV:</b> Concept of Depreciation, Causes and Features of Depreciation, Depreciation Accounting, Fixation of Depreciation Amount, Methods of recording Depreciation, methods of providing Depreciation, Depreciation Policy	[6]
<b>Text Books:</b> [T1] S. N. Maheshwari, Suneel K. Maheshwari and Sharad K. Maheshwari, "Financial Accountin BBA", Vikas Publishing House, 2018.	ng for
<ul> <li>Reference Books:</li> <li>[R1] S. Chakraborty and N.S. Roy, "Accounting and Finance for Engineers", Lawpoint Publicati 2016</li> <li>[R2] Y. P. Singh, "Accounting and Financial Management for I.T. Professional", New Age Intera 2007.</li> </ul>	
[R3] P.C. Tulsian, "Financial Accounting", Pearson, 2002.	



Paper Code: HSAI 307 (AIDS & AIML) / HSAR 302 (AR & IIOT)	L	T/P	Credits			
Subject: Technical Writing 2 0						
Marking Scheme: Teachers Continuous Evaluation: As per university examination norms in NUES mode from time to time End Term Theory Examination: As per university examination norms in NUES mode from time to time						
INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: As per University norms						
<ul> <li>There should be 9 questions in the end term examination question paper.</li> <li>Question No. 1 should be compulsory and cover the entire syllabus. This question s short answer type questions.</li> <li>Apart from Question No. 1, the rest of the paper shall consist of four units as per the have two questions. However, students may be asked to attempt only 1 question fro</li> <li>The questions are to be framed keeping in view the learning outcomes of course/pap the questions to be asked should be at the level of the prescribed textbooks.</li> <li>The requirement of (scientific) calculators/ log-tables/ data-tables may be specified</li> </ul>	e syllabu m each u per. The	s. Every u nit. standard/	init should			
Course Content			No. of Lectures			
<b>Unit I</b> Writing Skills: Descriptive, Narrative, Argumentive and Discursive Reflective Evaluative Writing Technical Writing: Definition, Purpose God Characteristics of Te		-	[6]			
<b>Unit II</b> The Technical Writing Process: Prewriting Stage, The Wribag Stage and the Post-w Technical Writing Skills: Researching, Summarizing and Outlining, Visual A Description, Ser of Instructions.	0	0	[6]			
<b>Unit III</b> Formal Formatting: Arrangement of Formal Elements. Front Material. Format Devi of Formal Report-Heading, Pagination, End Material-Citations References and Appendix.		•	[6]			
<b>Unit IV</b> Technical Writing Applications Memorandums and Informal Format, Recommendations and Feasibility Reports. Proposals, Progress Reports. Analysis Re Communication, letters and Job Applications Presentation and Meetings.	Foreo ports Br	Format otsional	[6]			
<b>Text Books:</b> [T1] Forsyth. Sandy and Lesley Hutchison, "Practical Composition", Edinburgh Oliver and Boyd, 1981						
Reference Books: [R1] Side, Charles H. "How to Write and Present Technical Information. Cambr University Press, 1999, Guffey, Mary Ellen. "Business Communication, Cir College Publishing, 2000.	•	0				



2 ode from the syllabuse on each unapper. The second seco	time to ti ve objecti s. Every t nit. standard/	me. ive or unit should
de from ti ty norms should hav a syllabus om each un oper. The s	time to ti ve objecti s. Every t nit. standard/	me. ive or unit should
should hav te syllabus om each un per. The s	ve objecti s. Every t nit. standard/	init should
e syllabus om each u per. The s	s. Every u mit. standard/	init should
per. The s	standard/	level of
i ii iequite	Ju	
		No. of Lectures
		[6]
		[6]
wth of So	cientific	[6]
idian Cou DO and I SRO and	uncil of Defence d Space	[6]
	a (IITS, dian Co OO and Revoluti	, Varahamihira), histry, Medicine ra, Architecture, e (Unani-tibb)), wth of Scientific a (IITS, Council dian Council of OO and Defence SRO and Space Revolution and

Indian National Science Academy, 1971

_____



- [R2] David Arnold, The New Cambridge History of India, III-5 (Science Technology and Medicine in Colonial India, Cambridge: Cambridge University Press, 2004
- [R3] Suvobrata Sarkar (Ed.), History of Science, Technology, Environment and Medicine in India, London and New York: Routledge (Taylor & Francis), 2022
- [R4] Deepak Kumar, Science and the Raj: A Study of British India, Oxford Scholarship Online, October 2012.
- [R5] P. Rama Rao, 'Science and Technology in Independent India: Retrospect and Prospect', in *Current Science*, Vol. 74, No.5, 10 March 1998, pp.418-432
- [R6] A.L. Basham, *The Wonder That was India*, Vol. I, New Delhi: Rupa & Co., 1981 (Only Chapter VIII: The Arts and the Appendices: Astronomy, The Calendar, Mathematics, Physics and Chemistry, Physiology and Medicine, Logic and Epistemology, Weights and Measures, Coinage)
- [R7] S.A.A. Rizvi, *The Wonder That was India*, Vol. II, London: Sidgwick & Jackson, 1987 (Chapter VII; Fine Arts-only on Monuments, Architecture and Painting for Geometry, etc.) M.S. Khan, 'Science and Technology in Early Medieval India', in https://dergipark.org.tr/tr/download/article-file/688183



Paper Code: MSAI 304 (AIDS & AIML) / MSAR 303 (AR & HOT)	L	T/P	Credits				
Subject: Entrepreneurship Mindset20							
Marking Scheme: Teachers Continuous Evaluation: As per university examination norms in NUES mode from time to End Term Theory Examination: As per university examination norms in NUES mode from time to the							
INSTRUCTIONS TO PAPER SETTERS: Maximum Marks : As per Universit	y norms	5					
<ul> <li>There should be 9 questions in the end term examination question paper</li> <li>Question No. 1 should be compulsory and cover the entire syllabus. This question s short answer type questions.</li> <li>Apart from Question No. 1, the rest of the paper shall consist of four units as per the have two questions. However, students may be asked to attempt only 1 question fro</li> <li>The questions are to be framed keeping in view the learning outcomes of course/pap the questions to be asked should be at the level of the prescribed textbooks.</li> <li>The requirement of (scientific) calculators/ log-tables/ data-tables may be specified</li> </ul>	e syllabus m each u per. The s	s. Every u nit. standard/	init should				
Course Content							
<b>Unit I</b> <b>Introduction: The Entrepreneur:</b> Theories of Entrepreneurship; Characteristic entrepreneurs, myths of entrepreneurship: entrepreneurial mindset- creativity (st creative ideas, developing creativity) and innovation (types of Innovation)			[6]				
<b>Unit II</b> <b>Promotion of a Venture and Writing a business plan:</b> Opportunity Ana Environment Analysis Economic, Social and Technological Analysis. Business business plan, parts of a business plan. Writing a Business Plan.	•		[6]				
<b>Unit III</b> <b>Entrepreneurship Support:</b> Entrepreneurial Development Programmes (EDP): EDP. Role of Government in Organizing EDPs. Institutions supporting small business enterprises: central level, state level, other agencies, industry associations.							
<b>Unit IV</b> <b>Practicals:</b> Presenting a business plan Project on Startup India or any other governmentrepreneurship Discussion on why Startup fails, role of MSME etc. Discussion entrepreneur in economic growth Discussion on technology park Case study discussi Indian entrepreneurs.	sion on	role of	[6]				
Reference Books: [R1] Charantimath Entrepreneurship Development and Small Business Enterpri [R2] Bamford C.E-Entrepreneurship: A Small Business Approach, McGraw Hil							



- [R3] Hisrich et al-Entrepreneurship. McGraw Hill Education
- [R4] Balaraju, Theduri- Entrepreneurship Development: An Analytical Study. Akansha Publishing House.
- [R5] David, Otis- A Guide to Entrepreneurship, Jaico Books Publishing House, Delhi.
- [R6] Kaulgud, Aruna- Entrepreneurship Management. Vikas Publishing.