SCHEME OF EXAMINATION

&

DETAILED SYLLABUS

FOR

BACHELOR OF TECHNOLOGY (B.TECH/M.TECH) DUAL DEGREE

FOR INDUSTRIAL INTERNET OF THINGS

(4+2 Years) Offered at University School of Automation and Robotics from A.S. 2022-23 onwards

University School of Automation and Robotics

GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY, EAST DELHI CAMPUS, SURAJMAL VIHAR-110032

Programme Outcomes

- 1. *Engineering Knowledge* (PO01): Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. *Problem Analysis* (PO02): Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- 3. *Design/Development of Solutions* (PO03): Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. *Conduct Investigations of Complex Problems* (PO04): Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions for complex problems:
 - a) that cannot be solved by straightforward application of knowledge, theories and techniques applicable to the engineering discipline as against problems given at the end of chapters in a typical textbook that can be solved using simple engineering theories and techniques;
 - b) that may not have a unique solution. For example, a design problem can be solved in many ways and lead to multiple possible solutions;
 - c) that require consideration of appropriate constraints / requirements not explicitly given in the problem statement such as cost, power requirement, durability, product life, etc.;
 - d) which need to be defined (modeled) within appropriate mathematical framework; and
 - e) that often require use of modern computational concepts and tools, for example, in the design of an antenna or a DSP filter
- **5.** *Modern Tool Usage* (PO05): Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. *The Engineer and Society* (PO06): Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. *Environment and Sustainability* (PO07): Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. *Ethics* (PO08): Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. *Individual and Team Work* (PO09): Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **10.** *Communication* (**PO10**): Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. *Project Management and Finance* (PO11): Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. *Life-long Learning* (PO12): Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

Course / Paper Group Codes:

BS: Basic Science

HS: Humanities, social science, management

ES: Engineering Science

MC: Mandatory courses

PC: Programme Core, that is course / paper offered in the discipline of the programme as a compulsory paper.

SC: School Core, that is course / paper offered in the discipline of the school as a compulsory paper.

PCE: Programme Core Elective, that is elective course / paper offered in the discipline of the programme. **OAE:** Open area elective offered by other schools or open / emerging area elective offered by the school. This allows the student to have two minor specializations also.

Definitions:

Batch: The batch of the student shall mean the year of the first time enrolment of the students in the programme of study in the first semester. Lateral entry students admitted in the 3rd semester / 2nd year shall be designated as students admitted in the previous batch as they are admitted one year later. A student re-admitted in a programme of study in a lower / later batch shall be considered as the student of the original batch for the purpose calculation of duration of study.

Programme of study shall mean Bachelor of Technology.

Acronyms:

APC: Academic programme committee comprising all faculty of the school.

L: Number of Lecture hours per week

T/P: Number of Tutorial / Practical Hours per week

C: Number of credits assigned to a course / paper

COE: Controller of Examinations of the Examinations Division of the University.

SGPA/CGPA: Semester/Cumulative Grade Point Average.

NUES: No end term examination shall be held. The evaluation shall be conducted as per the scheme of examinations as described in the scheme of study.

		Third Semester			
Group	Code	Paper	L	T/P	Credits
Theory]	Papers				
BS	BS 201	Linear Algebra and Numerical methods	4	-	4
PC	ARI 203	Artificial Intelligence and Its Applications	4	-	4
PC	ARI 205	Computer Networks	3	-	3
PC	ARI 207	Analog Electronics	4	-	4
PC	ARI 209	Mechatronic Systems and Applications	4	-	4
HS/MS	HSAR 211*	Engineering Economics	2	-	2
Practica	l / Viva Voce				
PC	ARI 251	Artificial Intelligence Lab	-	2	1
PC	ARI 253	Electronics Lab	-	2	1
PC	ARI 255	Mechatronic Systems and Applications Lab	-	2	1
PC	ARI 257	Computer Networks Lab	-	2	1
Total					25

* (NUES): Non-University Exam Subject, Comprehensive evaluation by the concerned teacher, out of 100, as per detailed syllabus.

	Fourth Semester										
Group	Code	Paper	L	T/P	Credits						
Theory F	Papers										
PC	ARI 202	Internet of Things	3	-	3						
PC	ARI 204	Data Structures	Data Structures 4 -								
PC	ARA 206	Fundamentals of Automation	4	-	4						
PC	ARI 208	Control Systems	4	-	4						
PC	ARI 210	Switching Theory and Logic Design	4	-	4						
PC	ARI 212	Optimization Techniques	4	-	4						
HS/MS	MSAR 214*	Accountancy for Engineers	2	-	2						
Practical	l / Viva Voce										
PC	ARI 252	IoT Lab	-	2	1						
PC	ARI 254	Data Structures Lab	-	2	1						
PC	ARI 256	OOPS With Java Lab	-	2	1						
PC	ARI 258	Industrial Automation and Drives Lab	-	2	1						
Total					29						

* (NUES): Non-University Exam Subject, Comprehensive evaluation by the concerned teacher, out of 100, as per detailed syllabus.

		Fifth Semester			
Group	Code	Paper	L	T/P	Credits
Theory	Papers				
HS/MS	HSAR 301*	Elements of Indian History for Engineers	2	-	2
HS/MS	MSAR 303*	Entrepreneurship Mindset	2	-	2
PC	ARI 305	Data Analytics	4	-	4
PC	ARI 307	Principles of Communication Systems	4	-	4
PC	ARI 309	Software Engineering	4	-	4
PCE	As per PCE List	Program Core Elective-Select one from given list. (PCE-1)	4	-	4
OAE	AROxxx	Elective from other schools or emerging areas/ Elective offered by the School in other branches (OAE-1).	3	-	3
Practic	al / Viva Voce				
PC	ARI 351	Data Analytics Lab	-	2	1
PC	ARI 353	Principles of Communication Systems Lab (Matlab/Labview)	-	2	1
PC	ART 355**	Summer Training (after 4th semester) Report	-	2	1
MC	ART357#	NSS / NCC / Cultural clubs / Technical Society /Technical club#	-	4	2
Total	1				28

* (NUES): Non-University Exam Subject, Comprehensive evaluation by the concerned teacher, out of 100, as per detailed syllabus.

(NUES): Comprehensive evaluation of the students by the concerned coordinator of NCC / NSS / Cultural Clubs / Technical Society / Technical Clubs, out of 100 as per the evaluation schemes worked out by these activity societies, organizations; the coordinators shall be responsible for the evaluation of the same. These activities shall start from the 1st semester and the evaluation shall be conducted at the end of the 5th semester. The detailed document containing the policy for the award of Marks to be prepared by APC

****(NUES):** Comprehensive evaluation by a committee of teachers, constituted by the Academic Programme Committee (APC), out of 100. The training shall be of 4 to 6 weeks duration. The training can be under the mentorship of a teacher of the school.

Sixth Semester									
Group	Code	Paper	L	T/P	Credits				
Theory I	Papers			l					
HS/MS	HSAR 302*	Technical Writing	2	-	2				
PC	ARI 304	Electronic Design Automation for VLSI	4	-	4				
PC	ARI 306	Embedded Systems	4	-	4				
PCE	As per PCE List	Program Core Elective-Select one from given list. (PCE-2)	4	-	4				
PCE	As per PCE List	Program Core Elective-Select one from given list. (PCE-3)	4	-	4				
OAE	AROxxx	Elective from other schools or emerging areas/ Elective offered by the School in other branches (OAE-2).	3	-	3				
OAE	AROxxx	Elective from other schools or emerging areas/ Elective offered by the School in other branches (OAE-3).	3	-	3				
Practica	al / Viva Voce								
PC	ARI 354	Electronic Design Automation for VLSI Lab	-	2	1				
PC	ARI 356	Embedded Systems Lab	-	2	1				
PCE	As per PCE List	PCE-2 Lab	-	2	1				
PCE	As per PCE List	PCE-3 Lab	-	2	1				
Total	•				28				

* (NUES): Non-University Exam Subject, Comprehensive evaluation by the concerned teacher, out of 100, as per detailed syllabus.

		Seventh Semester			
Group	Code	Paper	L	T/P	Credits
Theory F	Papers				
PC	ARI 401	Cloud Dew Edge Fog Computing	4	-	4
PC	ARI 403	Wireless Sensor Networks	4	-	4
PCE	As per PCE List	Program Core Elective-Select one from given list. (PCE-4)	4	-	4
PCE	As per PCE List	Program Core Elective-Select one from given list. (PCE-5)	4	-	4
OAE	AROxxx	Elective from other schools or emerging areas/ Elective offered by the School in other branches (OAE-4).	3	-	3
OAE	AROxxx	Elective from other schools or emerging areas/ Elective offered by the School in other branches (OAE-5).	3	-	3
Practical	l / Viva Voce				
PC	ARI 451	Wireless Sensor Networks lab	-	2	1
PC	ARI 453	Cloud Dew Edge Fog Computing Lab	-	2	1
PC	ARP 455	Minor Project***	-	-	4
PC	ART457	Summer Training (after 6 th semester) Report	-	-	1
Total					29

(NUES): Comprehensive evaluation by a committee of teachers, constituted by the Academic Programme Committee (APC), out of 100. The training shall be of 4 to 6 weeks duration. The training can be under the mentorship of a teacher of the school.

*** The student shall be allocated a supervisor/guide for project work at the start of 7th semester by the school, preferably, the project can be continued into the 8th semester. In the 7th semester evaluation, the criteria for evaluation shall be the conceptualization of the project work, the background study/literature survey and the identification of objectives and methodology to be followed for the project. In the absence of the supervisor, the Dean of the school can assign the responsibility of the supervisor (for the purpose of examinations) to any faculty of the school. The internal and external bifurcation of the project marks will be as per the bifurcation of marks for the practical examination.

	Eight Semester										
Group	Code	Paper	L	T/P	Credits						
PC/ Project	ARP 452	Major Project – Dissertation****	-	-	23						
Or											
PC/											
Internship	ART 452	Internship - Dissertation####	_	-	23						
	Total										

**** The student shall be allocated a supervisor/guide for project work at the start of the semester by the school. The criteria for evaluation shall be the conceptualization of the project work, the background study/literature survey and the identification of objectives and methodology to be followed for the project. In the absence of the supervisor, the Dean of the school can assign the responsibility of the supervisor (for the purpose of examinations) to any faculty of the school. The internal and external bifurcation of the project marks will be as per the bifurcation of marks for the practical examination.

Students have the option to pursue his/her Dissertation on the basis of the Live Projects in a Recognized (CIN No. Required) Company/ Organization. The proposed company/ organization must be approved by the Dean/APC.

Semester-wise List of Program Core Electives (PCE)

- 1. A Program Core Elective (PCE) shall be offered in various semesters as per the scheme of the program.
- 2. A Program Core Elective (PCE) shall be offered if at least $1/3^{rd}$ of the total program strength opts for the course.

	Course id	Course Name	L	Р	Credits
		Semester 5: Choose any one co	urse		
311	ARI 311	Introduction to Semiconductor Devices	4	-	4
313	ARI 313	Smart Grid and Sensors	4	-	4
315	ARI 315	Operating System	4	-	4
		Semester 6: Choose any two cou	irses	-	-
	ARI 312T	Cyber Security and Digital Forensics	4	-	4
312	ARI 312P	Cyber Security and Digital Forensics Lab	-	2	1
	ARI 314T	Deep Learning and Reinforcement Learning	4	-	4
314	ARI 314P	Deep Learning and Reinforcement Learning Lab	-	2	1
	ARI 316T	Smart Materials for IOT Devices	4	-	4
316	ARI 316P	Smart Materials for IOT Devices Lab	-	2	1
	ARI 318T	Introduction to Wireless and Cellular communication	4	-	4
318	ARI 318P	Introduction to Wireless and Cellular communication Lab	-	2	1
	ARI 320T	PCB designing and Fabrication	4	-	4
320	ARI 320P	PCB designing and Fabrication Lab	-	2	1
	ARI 322T	Data Base Management System	4	-	4
322	ARI 322P	Data Base Management System Lab	-	2	1
		Semester 7: Choose any two cou	irses		-
415	ARI 415	Radar and Navigation	4	-	4
417	ARI 417	Microwave Engineering	4	-	4
419	ARI 419	Digital Signal and Image Processing	4	-	4
421	ARI 421	IoT Security	4	-	4
423	ARI 423	Information Theory and Coding Techniques	4	-	4

List of Open Area Electives (OAE) to be offered by USAR

- 1. Open Area Electives (OAE) courses shall be offered by the school (USAR) to all the Programs of B.Tech./M.Tech. (Dual Degree), i.e., AI&DS, AI&ML, A&R, IIoT.
- 2. An Open Area Elective (PCE) course shall be offered for at least 1/3rd of the total program strength.
- 3. The number of elective subjects on offer, may be augmented with prior permission of Chair, BOS.
- 4. A common list of OAEs is given below, however, the list will be augmented in future as per the industry scenario.
- 5. Paper offered as an Open Area Elective (OAE) to AIDS/ AIML / IIOT/ AR branches provided the prerequisite of the paper is satisfied by the student and the same paper is not a core / elective paper of the respective branch. The students may be allowed to study such subject with the approval of the APC of USAR, subject to the condition that the paper is offered in the particular semester by the school.

Semester of Subjects	Paper Code	Paper	Т	Р	С
5 th Semester (To choose any one	ARO 371	3	0	3	
Elective Subject)	ARO 373	Mobile Application Development	3	0	3
	ARO 375	Analysis and Design of Algorithms	3	0	3
	ARO 377	Software Engineering	3	0	3
ARO 379		Internet of Things	3	0	3
6 th Semester	ARO 372	Operations Management	3	0	3
(To choose any two Elective Subject)	ARO 374	Metaverse	3	0	3
	ARO 376	Industry 4.0	3	0	3
	ARO 378	Supply Chain Management	3	0	3
	ARO 380	Software Project Management	3	0	3
	ARO 382	Modeling and Simulation	3	0	3
	ARO 384	Database Management Systems	3	0	3
	ARO 386	Introduction to Robotics	3	0	3
7 th Semester	ARO 471	Software Metrics	3	0	3

(To choose any two	ARO 473	Introduction to Electric Vehicle	3	0	3
Elective Subject)	ARO 475	3	0	3	
	ARO 477	Modern Manufacturing Processes	3	0	3
	ARO 479	Personal Finance	3	0	3
	ARO 481	Automobile Engineering	3	0	3
	ARO 483	Introduction to smart materials	3	0	3
	ARO 485	Cloud Dew Edge Fog(CDEF) Computing	3	0	3
	ARO 487	Social Media Analytics	3	0	3
	ARO 489	Natural Language Processing	3	0	3

Program Implementation Rules (B.Tech./M.Tech. Dual Degree)

- 1. The examinations, attendance criteria to appear in examinations, promotion and award of the degree shall be governed by the Ordinance-11 of the University. However, credits of courses/papers for OAE / PCE groups shall not be considered for the purpose of promotion from one year of study to the subsequent year of study.
- 2. The minimum duration of the Bachelor of Technology part of the Bachelor /Master of Technology (Dual Degree) programme shall be 4 years (N=4 years) (8 semesters). Lateral entry students shall be admitted in

the 2nd year and 3rd semester of the degree programme (effectively in the batch admitted in the first year in the previous academic session and shall be deemed to have been exempted from the courses/papers of the first year of the degree programme. No exemption certificate shall be issued in any case. A specific lateral entry student's minimum duration shall be the same as the minimum duration for the batch in which he/she

is admitted as a lateral entry student in the 2nd year.

3. The maximum duration of the Bachelor of Technology part of the Bachelor / Master of Technology (Dual Degree) programme shall be 6 years (N+2 years). After completion of N+2 years of study, if the student has

appeared in the papers of all the semesters up to the 8th semester, then a maximum extension of 1 year may be given to the student for completing the requirements of the degree if and only if the number of credits already earned by the student is at least 165 (128, in a case of LE Student) from the (non- honours components). Otherwise, the admission of the student shall stand cancelled. After the period of allowed study, the admission of the student shall be cancelled. A specific lateral entry student's maximum duration shall be the same as the minimum duration for the batch in which he/she is admitted as a lateral entry student in the 2nd year.

- 4. Only after qualifying for the award of the degree of Bachelor of Technology, the student may be allowed to proceed to the Master in Technology part of the Bachelor / Master of Technology (Dual Degree).
- 5. The scheme and syllabi of the Master of Technology part of the Bachelor / Master of Technology (Dual Degree) shall be notified separately. This document pertains to the Bachelor of Technology part of the Bachelor / Master of Technology (Dual Degree) programme only.
- 6. The students shall undergo the following group of Courses / Papers as enumerated in the scheme (*For the students admitted in the First Year / First Semester*):

Approved by BoS of USAR: 15/06/2023,Approved by AC sub-committee: 4/07//23Applicable from Batch admitted in Academic Session 2022-23 OnwardsPage | 10

Course Groups		Se	mes	ter	(Cre	edit	s)		Total Credits	Mandatory Credits
course droups	1	2	3	4	5	6	7	8		
BS	12	20	4						36	18
HS/MS	5	4	2	2	4	2			19	9
ES	12	5							17	17
РС			19	27	15	10	15	23	109	109
PCE					4	10	8		22	14
OAE					3	6	6		15	6
МС					2				2	2
	29	29	25	29	28	28	29	23	220	175

TABLE 1: Distribution of Credits. (Project/internship credits are 28 out of the 109 credits for Programme Core (PC) credits, while extra-curricular activities credits are 2 out of 19 credits for humanities/management / social science group (HS)

The students shall undergo the following group of Courses / Papers as enumerated in the scheme (*For the students admitted as Lateral Entry*):

Course Groups		S	eme	ster	Cr	edit	ts)		Total Credits	Mandatory Credits
course droups	1	2	3	4	5	6	7	8		
BS			4						4	0
HS/MS			2	2	4	2			10	6
ES			-	-	-	-	-	-	-	-
РС			19	27	15	10	15	23	109	109
PCE					4	10	8		22	14
OAE					3	6	6		15	6
МС					2				2	2
			25	29	28	28	29	23	162	137

TABLE 2: Distribution of Credits. (Project/internship credits are 28 out of the 109 credits for Programme Core (PC) credits, while extra-curricular activities credits are 2 out of 10 credits for humanities/management / social science group (HS)

7. Mandatory Credits, i.e. 175 (137, in the case of LE Student) specify the number of credits from each subject group to be mandatorily acquired by the student for the award of the degree. See clauses 12 and 13 also. Some of the papers are droppable in the sense that the student may qualify for the award of the degree even when the student has not cleared/passed some of the papers of these groups. However, the student has to earn the minimum credits for the programme of study as specified. See clauses 12 and 13 also.

- 8. The open electives of the OAE group of courses may also be taken through SWAYAM / NPTEL MOOCs platform. The student desirous of doing a MOOC-based course among the OAE group must seek approval from the APC of the school for the same before the commencement of the semester. The APC shall allow the MOOC-based OAE option to the student if and only if the MOOC subject/course being considered for the student is being offered in line with the Academic Calendar applicable. The student shall submit the successful completion certificate from the concerned MOOCs agency with marks to the School for onward transfer to the Examination Division. The Examinations Divisions shall take these marks on record for incorporation in the result of the appropriate semester. These marks/grades of these courses shall be used for calculation of the SGPA/CGPA of the student concerned by the examination division of the University. The degree to the student on fulfilment of other requirements for such cases shall be through clause 13. These MOOC courses taken by the students, if allowed by the APC of the school shall be of 3 credits or more collectively to be against or for one paper slot in the scheme, through MOOCs, though the marks shall be shown individually. That is in one paper slot in the scheme wherever a MOOC course is allowed, the student may register for more than one paper to aggregate 3 credits or more. If the credits of these MOOC Courses, allowed to a student is more than 3, then the maximum credit for the programme shall be as per the Program scheme. Also, in a particular semester, a student may take more than one MOOC course with the approval of the APC to meet the credit requirements of OAE for the semester. The cost of taking the MOOC course is to be borne by the concerned student. The results of the MOOC courses shall be declared separately by the examination division from the result for the papers conducted by the examination division of the University.
- 9. To earn an Honours degree, the student may enrol for 20 credits or more through SWAYAM/ NPTEL MOOCs platform. This point has to be read together with other points especially points 13 and 14, The acquisition of the credits should be completed before the 15th of the July of the admission year plus 4 years (3 Years, in the case of LE Student). That is, if a student is admitted in the year X, then these credits must be acquired through MOOCs by 15th July of the year (X+4) (X+3, in the case of LE Student), no extra duration or time shall be allocated.
- 10. Honours in the degree shall be awarded if and only if at least 20 credits are acquired through MOOCs. To obtain Honours in the programme, the student must apply to the School about the same before the commencement of the 5th semester. The specific courses through MOOCs shall be registered by the student only after approval by the Academic Programme Committee (APC) of the School. The APC shall approve the course if it is not already studied by the student or the student shall not study it in future and adds value to the major area of specialization (which is the degree). The papers for which the student desires to appear for Honours through MOOCs, all papers results shall be submitted by the student to the school for onward transfer to the Examination Division of the University, to be taken on record of the University. The student must submit the passing certificate of the MOOC course. The results of these papers shall be a part of the records of the examinations division, shall be notified by the examinations division of the University, and a separate mark sheet shall be issued by the Examinations divisions. The cost of taking the MOOC course is to be borne by the concerned student. Such courses shall be reflected as additional courses/papers for the student.

If a student acquires less than 20 credits through MOOCs, following the mechanism specified, then also the results of these papers shall be taken on record as specified above, though no Honours degree shall be awarded.

The papers through MOOCs for the Honours degree shall not be a part of the set of papers over which the SGPA / CGPA of the student shall be calculated.

The papers through MOOCs for the Honours degree shall be additional papers studied by the students and are to be taken into account only for award of Honours in the degree programme, if 20 credits are earned through MOOCs as approved by APC, by a student. See Clause 14 also.

Approved by BoS of USAR: 15/06/2023,Approved by AC sub-committee: 4/07//23Applicable from Batch admitted in Academic Session 2022-23 OnwardsPage | 12

- 11. Maximum Credits: At least 220 (162, in the case of LE Student) (Table 1 & Table 2), these are the credits for which the student shall have to study for the non- Honours component of the curriculum. The student has to appear in the examinations for these credits.
- 12. Minimum Credits: At least 200 (145, in the case of LE Student) (out of the 220 and 162 non-Honours papers credits for Regular and LE students respectively). See clause 7 also.
- 13. The following degree route can be taken by a student for the award of Honours and Non-Honours Degree (also refer to point 14):
 - 1) The students shall be awarded the degree under the following conditions:
 - a) The student has earned the mandatory credits as defined in Table 1 and Clause 7.
 - b) In addition, the total credits (including the above-specified credits) earned by the student is at least 200 (145, in the case of LE Student) credits.

The degree nomenclature of the degree shall be as: "*Bachelor of Technology (Major Discipline)*"; if criterions/points 9 & 10 are not satisfied for Honours. Otherwise, if criterions/points 9 & 10 are met, then the degree shall be an Honours degree and the nomenclature shall be as: "*Bachelor of Technology (Major Discipline) (Honours)*", if in addition to point 13-1), student fulfils the criteria for Honours as specified at point 10.

- 2) For the award of an Honours Degree, a student has to earn 220 (162, in the case of LE Student) credits of the program and additional 20 Credits as per Clauses 9 & 10. However, if a student earns less than 220 (162, in the case of LE Student) credits along with 20 credits of MOOCs as per clauses 9 & 10, then that student will not be given the degree of Honours, and the degree awarded in that case shall be "*Bachelor of Technology (Major Discipline)*".
- 14. The Honours degree shall only be awarded if the CGPA of the student is above or equal to 7.5 in addition to fulfilment of criterions/points 9, 10 and 13 above and the degree is awarded after the immediate completion of the 4th of the batch from the year of admission. No Honours shall be conferred if the degree requirements are not completed in the minimum duration.
- 15. The scheme of examinations for the B.Tech. Programmes at the affiliated institutions shall be notified separately.
- 16. Pass marks in every paper shall be 40.
- 17. The grading System shall be as per Ordinance 11 of the University.
- 18. The students desirous to continue to the Master of Technology part of the dual degree programme, must first complete the requirements for the award of the Bachelor of Technology degree, before being allowed to proceed for the Master of Technology part.
- 19. Teachers of other Schools, as and when deputed by their school, for teaching the students enrolled in programmes offered by the University School of Automation and Robotics (USAR) shall be a part of the Academic Programme Committee of the school. Such teachers, for all academic matters, including teaching, teachers' continuous evaluation, term end examinations etc. shall be governed by the decisions of the APC of USAR. Similarly, the guest faculty, the visiting faculty and the contract / Ad Hoc faculty as and when deputed to teach students of USAR shall form a part of APC of USAR.
- 20. The medium of instructions shall be English.

DETAILED SYLLABUS FOR 3RD SEMESTER

Approved by BoS of USAR: 15/06/2023,Approved by AC sub-committee: 4/07//23Applicable from Batch admitted in Academic Session 2022-23 OnwardsPage | 14

	Linea	r Algehre								L	Р	Credits		
Marking	Linear Algebra and Numerical Methods 4 0													
	g Schen	ne:												
		uous Eva		-	•									
End Terr	n Theo	ry Exami	nation: A	As per un	iversity e	examinat	ion norn	ns from t	ime to tii	ne.				
INSTR	UCTIO	NS TO I	PAPER	SETTEI	RS: Max	imum M	Iarks: A	s per Ur	niversity	Norms				
		ould be 9 c	-				-							
		No. 1 sho					ire syllab	us. This c	uestion s	hould have	e objectiv	ve or sho		
		pe question m Question					projet of	four units	as par th	o gullobug	Euomuu	nit choul		
	-	questions							-	-	•			
		e 15 marks		, ~			r .					1		
	-	tions are t			0		0		ourse/pap	er. The sta	andard/ le	evel of th		
		to be aske				•			1					
≻]	he requi	irement of	(scientifi	c) calcula	itors/ log-	tables/ da	ita-tables	may be s	pecified if	required				
Т		ies [Bloo				/ -								
	-	of students			· •	-		-	-					
	multiplic K4]	cation, inn	er produc	t space, n	orms, orth	iogonal v	ectors, In	near indep	bendence,	spanning	sets. [K]	,K2,K3,		
	-	of students	to unders	stand num	nerical lin	ear algeb	ra. and to	apply the	ese techni	aues to rea	al world r	problems.		
	[K1, K2					0	,	TT J		1	1			
CO3	Ability	of student	s to num	erically s	solve non	linear ec	uations	and syste	m of line	ar equation	ons. [K2 ,	K3, K4]		
CO4	Ability	of student	s to learn	numerica	al methods	s to obtain	n interpol	ating poly	ynomials a	and approx	kimate	, _		
		itiation and					•							
CO/														
PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12		
CO1	3	3	3	3	3	-	-	-	1	-	1	3		
CO2	3	3	3	3	3	-	-	-	1	-	1	3		
CO3	3	3	3	3	3	-	-	-	1	-	1	3		
CO4	3	3	3	3	3	-	-	-	1	-	1	3		
_	Conten	t				•						No of lectures		
Course														
Course (Unit I														
Unit I Linear .	-	a: Vector	-	-		-		-		-		[12]		

Approved by BoS of USAR: 15/06/2023, Approved by AC sub-committee: 4/07//23 Applicable from Batch admitted in Academic Session 2022-23 Onwards Page | 15

product spaces and normed space, Gram Schmidt orthogonalization process.

Unit II

Numerical Linear Algebra: LU factorisation, Cholesky factorisation, Singular value decomposition (SVD), SVD in image processing, Solving least squares using SVD	[8]
Unit III Numerical Methods for solving nonlinear equations and system of linear equations: Methods for solving nonlinear equations- Bisection method, Method of False position, Secant method, Newton- Raphson method. Methods for system of linear equations: Gauss elimination, iterative methods of Gauss Jacobi and Gauss Seidel.	[10]
Unit IV Interpolation, Numerical Integration and differentiation: Interpolation techniques-Lagrange interpolation, Newton Divided difference interpolation, Newton Forward and Backward difference method. Numerical Integration: Trapezoidal, Simpson's 1/3 rule, Simpson's 3/8 rule. Numerical differentiation: Approximation of derivatives using interpolating polynomials.	[10]
 Text Books: [T1] Friedberg, Stephen H., Arnold J. Insel, and Lawrence E. Spence. <i>Linear Algebra: Pears International edition</i>. Pearson Higher Ed, 2013. [T2] Datta, Biswa N. <i>Numerical linear algebra and applications</i>. SIAM, 2010 [T3] Jain, Mahinder Kumar. <i>Numerical methods for scientific and engineering computation</i>. Numerical, 2003. 	
 Reference Books: [R1] Lay, David C. <i>Linear algebra and its applications</i>. Pearson Education, India, 2003. [R2] Sastry, Shankar S. <i>Introductory methods of numerical analysis</i>. PHI Learning Pvt. Ltd., 2012. [R3] Hoffman, Joe D., and Steven Frankel. <i>Numerical methods for engineers and scientists</i>. CRC press 	ss, 2018.

University School of Automation and Robotics GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY

East Delhi Campus, Surajmal Vihar

Delhi - 110092

Paper	Code:	ARI 203	3							L	T/P	Credits
Subje	Subject: Artificial Intelligence and Its Applications 4 -											
Teache		tinuous			-	•			ms from time			
INSTI	RUCTI	ONS TO	O PAPE	R SET	TERS:	Maxin	num Ma	arks: As	s per Univer	sity Nor	ms	
A A A	Questic short a Apart f should questic The que	nswer typ from Que have two on should sestions as estions to	should b be question stion No o question be 15 m re to be f be asked	e compu ons. It sh . 1, the r ns. How arks. ramed k l should	Ilsory annould be rest of th ever, stu reeping i be at the	d cover of 15 m e paper idents m n view t e level o	the entire aarks. shall con ay be ask he learni f the pres	sist of fo ced to atte ng outcor scribed te	s. This question ur units as per empt only 1 q mes of course	r the sylla uestion fi /paper. T	ubus. Ever com each t	ry unit unit. Each
Cours	e Outc	omes Bl	oom's k	Knowle	dge Lev	vel (KL):					
CO1	Ability	of stude	ents to u	ndersta	nd basic	c conce	pt of AI	and Exp	ert System [K1,K2]		
CO2	Ability	of stude	ents to A	pply ar	nd analy	ze vari	ous sear	ching alg	gorithms [K3	3, K4]		
CO3	Ability	of stude	ents to a	pply fuz	zzy logi	c techn	iques in	reasonir	ng [K3]			
CO4	Ability	of stude	ents to u	ndersta	nd the b	basics co	oncept a	nd appli	cation of ma	chine lea	urning. [k	K1, K2]
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	3	3	3	2	-	-	1	3	1	2
C O2	3	3	3	3	3	1	-	-	2	3	1	2
C O 3	3	3	3	3	3	1	-	-	3	3	2	3
C O 4	3	3	3	3	3	3	-	_	3	3	2	3
Cours	e conte	ent				1	1	1				No. of lectures
intellig enviro	l uction gent ag nments	gents: A	agents are of age	and En ents, pro	vironm	ents, t olving a	he conc agents, p	cept of roblem	n of AI and rationality, formulation. cycle of Ex	the na	ture of	[10]

Unit II

 Searching: Searching for solutions, uninformed search strategies – Breadth first search, depth first Search. Search with partial information (Heuristic search) Hill climbing, A*, AO* Algorithms, Problem reduction, Game Playing-Adversarial search, Games, mini-max algorithm, optimal decisions in multiplayer games, Problem in Game playing, Alpha-Beta pruning, Evaluation functions. Knowledge representation issues, predicate logic: logic programming, semantic nets- frames and inheritance, constraint propagation, representing knowledge using rules, rules-based deduction systems. Reasoning under uncertainty, review of probability, Baye's probabilistic interferences and dempster Shafer theory. 	[10]
Unit III	
Fuzzy Systems: Crisp sets, Fuzzy sets: Basic types and concepts, characteristics and significance of paradigm shift, Representation of fuzzy sets, Operations, membership functions, Classical relations and fuzzy relations, fuzzification, defuzzification, fuzzy reasoning, fuzzy inference systems, fuzzy control system, fuzzy clustering, applications of fuzzy systems. Euro-fuzzy systems, neuro-fuzzy modeling; neuro-fuzzy control.	[12]
Unit IV	
Introduction to Machine Learning: What is Machine Learning, Learning from Data, History of Machine Learning, Big Data for Machine Learning, Leveraging Machine Learning, Descriptive vs Predictive Analytics, Artificial Intelligence and Machine Learning, Types of Machine Learning, Supervised, Unsupervised, Semi-supervised, Reinforcement Learning, Introduction to Neural Network and Deep Learning.	[10]
Text Books:	
 [T1] Elaine R., Kevin K. (2009). Artificial Intelligence. Tata McGraw Hill. [T2] Ross T. J. (1995). Fuzzy Logic with Engineering Applications. McGraw-Hill. [T3] Russel S., Norvig P. (2003). Artificial Intelligence – A Modern Approach. Second Edition Education 	n. Pearson
Reference Books:	
[R1] Nilsson N. (1982). <i>Principles of Artificial Intelligence</i>. Morgan Kaufmann.[R2] Poole D., Mackworth A., Goebel R. (1998). <i>Computational Intelligence: a logical approa</i>	ch. Oxford

University Press.

Paper co	ode : Al	RI 205								L	T/P	Credits
Subject	: Comp	uter Ne	tworks							3	0	3
Marking Teachers End Terr	Contin	uous Eva		-		•						
INSTRU	UCTION	NS TO F	PAPER	SETTE	RS: Ma	ximum	Marks	: As per	Univer	sity nor	ms	
> (short > (short > 1 of the > 1 Course (CO1: To CO2: To CO3: To	There sho Question answer t Apart fro d have tw The quest question The reque Dutcom Dutcom Outcom Outcom Outcom Outcom	ould be 9 No. 1 sho ype quest om Quest tions are ns to be a irement of stand th stand ar ze the dif the conc	question ould be c tions. ion No. 1 ons. How to be fran sked sho of (scienti om's Kn e basic on d reme fferent F	is in the e ompulso i, the rest vever, stu med keep uld be at ific) calcu owledge concepts mber la	end term ry and co t of the p idents ma bing in vi the level ulators/ he e Level s of Com yers of C Fechniqu	examinat over the e paper shal ay be ask ew the le l of the pr og-tables (KL)]: nputer No OSI Mod ues and 1	tion ques ntire syll Il consist ed to atte arning ou rescribed / data-tab etwork. el, Mult IP Addro	tion pape abus. Thi of four u empt only utcomes of textbook bles may [K2] iplexing essing So	er s questio units as p 1 questi of course, ts, be specif and Tra chemes.	on should er the syl on from o /paper. T fied if req nsmissio [K4]	have obj llabus. Ev each unit he standa juired	very unit
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	3	3	1	-	-	-	-	-	1	2
CO2	3	3	3	3	1	2	-	-	-	-	1	2
CO3	3	3	3	3	1	2	-	-	-	1	2	3
CO4	3	3	3	3	1	2	-	-	-	2	2	3
Course	Content	;										No of Lectures
Unit I Introduce network The Phy Unguidee of PSTN	software sical La d media	e, Protoc yer: The , Switch	col layer eoretical ing (circ	ing, Ref	erence n or data co	nodels ((ommunio	OSI & T cation, T	CP/IP M	Iodel). sion mee	dia: Guio	ded and	[9]

l

Unit II

The Data Link Layer: Data link layer design issues, Error detection and Correction Techniques, Elementary data link control protocols, Sliding window protocols, Example data link protocols (HDLC and PPP). The Medium Access Sublayer: The channel allocation problem, multiple access protocols, IEEE standard 802.3 & 802.11 for LANS and WLANs, Network devices- repeaters, hubs, Bridge, Switches and Routers. Transmission Networks: PDH Networks, SONET/SDH Networks, DWDM Networks, Introduction to Cell Switched Networks e.g. Asynchronous Transfer Mode (ATM) and Packet Switched Networks	[9]
Unit III	
 Transport layer: Transport layer services, Elements of transport protocols, Overview of UDP and TCP. Networking Theory and Design for Big Data (Networking Server for computation The Network Layer: Network layer design issues, routing algorithms, congestion control algorithms ,Quality of Service, Introduction to IPv4 Addressing, Subnetworks and Subnetting, IPv4 protocol Packet Format, Forwarding of IP packets, IPv4 vs IPv6, Congestion control algorithms. 	[9]
Unit IV Case Study : Design and Development of new Routing Technique for determination of the optimized routing path in Wireline Network.	[9]
 Text Books: [T1] Behrouz A. Forouzan, McGraw-Hill Higher Education, Boston (2003), Softcover, pp. 9 XXXIV, ISBN: 0-07-251584-8. [T2] Yu, S., Lin, X., Misic, J., & Shen, X. S. (Eds.). (2015). Networking for big data (Vol. 2) Press. [T3] Dimitri, B., & Robert, G. (2000). Data networks. 	-
Reference Books:	

[R1] Black, U. (1993). Computer networks protocols, standards, and interfaces. Prentice-Hall, Inc..[R2] A. Tanenbaum (2011) Computer Networks. 5th edition, Pearson

Delhi - 110092

Paper	Code:	ARI 2	07							L	T/P	Credits
Subject	t: Ana	log Ele	ectroni	cs						4	-	4
End Te	ers Cor erm Th	ntinuou leory E	xamina	ation: As	per uni	versity e	xaminati	on norms	ns from time	e to time		
INSTE	RUCT	IONS '	TO PA	PER SE	TTER	S: Maxir	num Ma	irks: As	per Unive	rsity No	orms	
> shou ques > of th >	Quest rt answ Apar uld hav stion sh The q ne ques The r e Outc Analy	tion No. er type t from (re two c nould be nould be uestion tions to equiren comes	1 shou question Question e 15 man s are to be aske nent of (Bloom	ld be com ns. It shou n No. 1, t is. Howev rks. be frame ed should (scientific a's Knov c Current	apulsory ild be of he rest o yer, stude d keepin be at the calcula vledge I charact	and cover 15 marks f the pape ents may g in view e level of ttors/ log- Level (K)	the entire r the entire er shall cc be asked the learni the prescr tables/ da L)]: of transist	onsist of fo to attemp ng outcor ibed texth ta-tables n tor as an	This quest our units as t only 1 qu nes of cours books. may be spec amplifier.	per the steed of the se/paper. cified if r	syllabus. E om each u The stand equired. 2]	Every unit init. Each ard/ level
CO2				actures a . [K1, K		sical ope	rations o	I MOSFI	ET and the	e effect (or capacit	ances on
CO3	Class	ify the	power	amplifie	rs. [K3,	K4]						
CO4	Reme	ember t	he fund	lamental	concep	ts of ope	rational a	amplifier	s. [K2, K3	6]		
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	-	-	2	-	-	-	-	-	1	-	2
CO2	3	3	3	2	-	-	-	-	-	-	-	2
CO3	-	-	-	2	-	-	-	-	-	-	-	-
CO4	3	-	-	2	-	-	-	-	-	-	1	-
Course	e Cont	tent										No of lecture

I

Unit I

BJT: Review of semi-conductor Physics, Open-circuited p-n junction, Diode equation, PN diode as a rectifier (forward bias and reverse bias), Voltage characteristics, BJT as an amplifier and as a switch, brief idea of dc analysis, Biasing circuits, small signal operation and models, single stage BJT amplifiers.	[10]
Unit II MOSFET Circuits: MOSFET structure and I-V characteristics. Depletion type and Enhancement type MOSFET, MOSFET as a switch. small signal equivalent circuits – gain, input and output impedances, small-signal model and common-source, common-gate and common-drain amplifiers, trans conductance, high frequency equivalent circuit.	[10]
 Unit III Differential Amplifiers: MOS differential Pair, Small signal operation, frequency response of differential amplifier, Introduction to differential amplifier with active load. Multi-Stage and Power Amplifiers: Direct coupled and RC Coupled multistage amplifiers, Feedback amplifiers, Multivibrators – Analysis and Design of Bistable, Monostable. Power Amplifiers: Power dissipation in transistors, difference with voltage amplifiers, Amplifier classification (Class A, Class B, Class C, Class AB) class AB push pull amplifier, collector efficiency of each, and cross over distortion. 	[10]
Unit IV Operational Amplifiers: Ideal op-amp, Output offset voltage, input bias current, input offset current, slew rate, gain bandwidth product, Inverting and non-inverting amplifier, Differentiator, integrator, Op-amp voltage adder, Square-wave and triangular-wave generators.	[10]
 Text Books: [T1] Adel S. Sedra, Kenneth C. Smith, "Microelectronic Circuits", Oxford University Pres Edition, 2005. [T2] Thomas L. Floyd, David M. Buchla, Electronics Fundamentals: Circuits, Dev. Applications, 8th Edition, Pearson education, 2014. 	
References: [R1] Donald E. Neaman, " <i>Electronic Circuit, Analysis and Design</i> ", Tata McGraw Hill Pub Company Limited, Second Edition, 2006.	olishing

[R2] David A. Bell, "*Electronic devices and Circuits*", 5th Edition, Oxford University Press India, 2008.

Paper Code: ARI 209 T/P Credits L Subject: Mechatronic Systems and Applications 4 4 _ **Marking Scheme** Teachers Continuous Evaluation: As per university examination norms from time to time. End Term Theory Examination: As per university examination norms from time to time. **INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: As per University Norms** There should be 9 questions in the end term examination question paper \blacktriangleright \blacktriangleright Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 15 marks. Apart from Question No. 1, rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, student may be asked to attempt only 1 question from each unit. Each question should be 15 marks. The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the \triangleright questions to be asked should be at the level of the prescribed textbooks. The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required. Course Outcomes [Bloom's Knowledge Level (KL)]: **CO1:** Ability of students to explain the basic fundamentals of mechatronics. [K1, K2] **CO2:** Ability of students to select appropriate sensors and actuators, and apply signal conditioning to monitor and control of a mechatronics system. [K1, K2, K3, K4] **CO3:** Ability of students to understand about the basics of microprocessor, microcontroller and PLCs, and develop their programming concepts for mechatronics system development. [K1, K2, K4, K6] **CO4:** Ability of students to apply the system modelling concepts to model and analyze the mechatronics systems. [K3, K4] **Course Outcomes (CO) PO06** CO/PO PO01 PO02 **PO03 PO04** PO05 **PO07 PO08 PO09 PO10 PO11 PO12 CO1** 3 2 2 3 2 3 2 1 3 _ _ _ **CO2** 3 3 3 3 2 3 2 3 1 _ 3 3 3 3 3 3 3 **CO3** _ 1 3 _ _ **CO4** 3 3 3 3 2 3 1 3 3 No of **Course Content** lectures Unit I **Introduction:** Definition of mechatronics, measurement system, control systems, microprocessor-based controllers, mechatronics approach. Sensors and Transducers: Introduction, Performance terminology, static and dynamic [10] characteristics of transducers, selection of sensors. Sensor for measurement of displacement, position, motion, force, torque, strain gauge, temperature, pressure and flow. Optical encoder, tactile and proximity, ultrasonic sensor & transducers, opto-electrical sensor, gyroscope. Smart sensors. Unit II Actuators: Definition, example, types, selection. Mechanical Actuation System: Cams, Gear trains, Ratchet and Pawl, Belt and chain drives, Bearings. Hydraulic and Pneumatic Actuation System: [10] Pneumatic actuator. Electro-pneumatic actuator. Hydraulic actuator, process control valves. Electrical actuating systems: solid-state switches, solenoids, voice coil; electric motors; DC motors,

AC motors, single phase motor; 3-phase motor; induction motor; synchronous motor; stepper motors. Piezoelectric actuator: characterization, operation, and fabrication; shape memory alloys. Signal Conditioning: Signal conditioning, filtering digital signal, multiplexers, data acquisition, digital signal processing, pulse modulation, data presentation systems.	
Unit III	
Microprocessors & Microcontroller: Introduction, Microprocessor building blocks, combinational and sequential logic elements, memory, timing and instruction execution fundamentals with example of primitive microprocessor. Embedded System: Introduction and Applications. Microcontrollers for mechatronics: Introduction to Microcontroller and its families, Criteria for Choosing Microcontroller. Microcontroller Architecture, Microcontroller programming interfaces.	[12]
Programmable logic controllers: Programmable logic controllers (PLC) Structure, Input / Output Processing, principles of operation, PLC versus Microcontrollers, Programming on PLC.	
Unit IV	
System Models: Mathematical models, Mechanical, Electrical, Hydraulic and Thermal Systems, Modelling of dynamic systems. Design of Mechatronics systems: Stages in designing mechatronics system, Traditional and Mechatronic design. Dynamic response of systems, transfer function and frequency response, closed loop controllers.	[8]
Mechatronics system applications : Boat Auto pilot, Pick and place robots, high speed tilting train, automatic car park system, coin counter, engine management system, automated guided vehicle, autonomous mobile system, antilock brake system control, Auto-Focus Camera, Printer, Domestic Washing Machine, Optical Mark Reader, Bar Code Reader.	
Text Books:	
 [T1] W.Bolton, (2003) <i>Mechatronics</i>, Pearson education, second edition, fifth Indian Reprint. [T2] "Introduction to Mechatronics and Measurement Systems" by David G Alciatore and BiHistand. [T3] "Principles, Concepts and Applications - Mechatronics" by Nitaigour and Premchand Ma [T4] Smaili, A., & Mrad, F. (2008). <i>Mechatronics: Integrated technologies for intelligent ma</i> Oxford University Press. 	hilik
Reference Books:	
 [R1] R.K Rajput, (2007) A textbook of mechatronics, S. Chand & Co. [R2] D. A. Bradley, Dawson D., Buru N.C. and. Loader A.J, (1993) Mechatronics, Chapman a [R3] Necsulescu, D. S. (2002). Mechatronics. Pearson College Division. [R4] Kamm, L. J. (1995). Understanding electro-mechanical engineering: an introduce mechatronics (Vol. 3). John Wiley & Sons. [R5] Nitaigour Premchand Mahadik, (2003) Mechatronics, Tata McGraw-Hill publishing Con-Ltd, 2003. 	ction to

DETAILED SYLLABUS FOR 4TH SEMESTER

Approved by BoS of USAR: 15/06/2023,Approved by AC sub-committee: 4/07//23Applicable from Batch admitted in Academic Session 2022-23 OnwardsPage | 25

Paper Code: ARI 202 L T/P O											Credits	
Subject	: Interne	et of Thi	ngs						3	3	-	3
	Marking Scheme Teachers Continuous Evaluation: As per university examination norms from time to time.											
End Term Theory Examination: As per university examination norms from time to time.												
INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: As per University Norms												
		-										
 Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or s 										e or short		
	swer type					• ,	6.6	•,	.1 11	1 5	. 1	111
												ould have on should
	15 marks		ver, stude	Int Indy O	e asked to	5 attemp	t only i t			i unit. La	en questi	on should
			e framed	keeping	in view th	ne learni	ng outcoi	nes of co	urse/pape	er. The sta	andard/ le	evel of the
	estions to											
	e requirer		cientific)	calculato	ors/ log-ta	bles/ da	ta-tables	may be s	pecified i	f required	1	
Course	Outcom		<u> </u>					-				
CO1:	Ability K3]	of stude	nts to in	plement	the basi	c know	ledge of	Internet	of thing	gs and pr	otocols.	[K1, K2,
000	4	of stude	nts to im	plement	knowled	dge of I	oT in so	me of th	e applica	ation are	as where	e IoT can
CO2:	-			-	iddlewar	-						
CO3:	-	of stude y stack a			-	of IoT	architec	ture, IoT	reference	ce model	and ove	erview of
004				= (, =	nent sol	id theor	etical for	undation	of the l	oT Plat	form and
CO4:	System	Design.	[K1, K2]	Ĩ							
Course	Outcom	es (CO)				_	-			-		-
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	3	3	2	2	1	1	3	2	2	3
CO2	3	3	3	3	2	2	1	1	3	2	2	3
CO3	3	3	3	3	2	2	1	1	3	2	2	3
CO4	3	3	3	3	2	2	1	1	3	2	2	3
Course	Content											No of lectures
Unit I												
	iction to		0		-						•	
	logy driv					-					-	[8]
	urity Iss		0				-			nd Netw	orking	
	ogies, Inf	rastructu	ire, Over	view of	IoT supp	ported F	lardware	e platfori	ns			
Unit II	tocols: P	matagal	Standard	ization f		fforta 1	MOM on	AWGNI	Drataal	Doloo	f NAONA	
-	M2M Va				,	,				,		[9]
,	ID Prot		,		,	U	U			,		[7]
	2.15.4–B											
Unit III					., _ , ,	0-00,			~ mj			54.03
		e: IoT C)pen-sou	rce archi	itecture ((OIC), (DIC Arcl	hitecture	& Desig	gn princi	ples	[10]

IoT reference Model and Architecture: Functional View, Information View, Deployment and	
Operational View, IoT Devices and deployment models, IoTivity: An Open source IoT stack	
Overview: IoTivity stack architecture, Resource model and Abstraction	
Unit IV	
Web of things: Web of Things versus Internet of Things, Two Pillars of the Web, Architecture	
Standardization for WoT, Platform Middleware for WoT, Unified Multitier	[0]
WoT Architecture: WoT Portals and Business Intelligence	[9]
IoT applications Applications for industry: Future Factory Concepts, Brownfield IoT, Smart	
Objects, Smart Applications. Study of existing IoT platforms /middleware, IoT- A, Hydra etc.	
Textbooks:	
[T1] Zhou, H. (2012). The internet of things in the cloud. Boca Raton, FL: CRC press.	
[T2] Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds) (2011) Architecting the In	ternet of
Things, Springer.	
[T3] Easley, D., & Kleinberg, J. (2010). Networks, crowds, and markets: Reasoning about	a highly
connected world. Cambridge university press.	
[T4] Hersent, O., Boswarthick, D., & Elloumi, O. (2011). The internet of things: Key applicat	tions
and protocols. John Wiley & Sons.	
References Books:	
[R1] Bahga, A., & Madisetti, V. (2014). Internet of Things: A hands-on approach. Vpt	t.Francis
daCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everythi	
Edition, Apress Publications, 2013	-
[R2] Pfister, C. (2011). Getting started with the Internet of things: connecting sensors and	
microcontrollers to the cloud." O'Reilly Media, Inc.".	

University School of Automation and Robotics GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY East Delhi Campus, Surajmal Vihar

Delhi - 110092

C.L.	coue . 1	RI 204								L	Р	Credits
Subject : Data Structures40											4	
Teach	ing Sche ers Conti erm The	nuous E		-		•						
INST	RUCTIO	ONS TO) PAPE	R SET	TERS:	Maxim	um Mai	rks: As p	oer Univ	ersity N	orms	
A A A A A	Question short an Apart fr should h The que of the qu	n No. 1 s swer typ om Ques nave two stions ar uestions	should be e question stion No question e to be f to be ask	e compu ons. 1, the r ns. Howe ramed ka ced shou	lsory an est of the ever, stu eeping in ld be at	d cover t e paper s dents ma n view th the level	he entire hall cons y be aske e learnin of the pr	syllabus. ist of four ed to atten	This ques units as npt only es of cour extbooks	per the sy l questior rse/paper.	llabus. E from eac The stan	•
repres	Impleme entations Analyze	. [K3] .		-		-		-	-			
sort, a CO4: CO/	nd merge Understa	e sort [K and the 1	(4, K5]. represer	ntation o	of disjoi	int sets a	nd apply	the unio	on-find a	lgorithm	(K2].	xchange
sort, a CO4: CO/ PO	nd merge	e sort [K and the 1	(4 , K5].	ntation o	of disjoi	int sets a						xchange PO12
sort, a CO4: CO/ PO CO1	nd merge Understa PO01 3	e sort [K and the r PO02 3	(4, K5]. represer	ntation o	of disjoi	int sets a	nd apply	the unio	on-find a	lgorithm	(K2].	
sort, a CO4: CO/ PO CO1 CO2	nd merge Understa PO01 3 2	PO02 3 3	PO03 3 3	PO04 3 3	of disjoi	int sets a	nd apply	the unio	on-find a	lgorithm	[K2]. PO11 1 1	PO12 2 2 2
sort, a CO4: CO/ PO CO1 CO2	nd merge Understa PO01 3	e sort [K and the r PO02 3	4, K5]. represer PO03 3	PO04	of disjoi	int sets a	nd apply	the unio	on-find a	lgorithm	• [K2]. PO11	PO12 2
sort, a CO4: CO/ PO CO1 CO2 CO3	nd merge Understa PO01 3 2	PO02 3 3	PO03 3 3	PO04 3 3	PO05	int sets a	nd apply	the unio	on-find a	lgorithm	[K2]. PO11 1 1	PO12 2 2 2
sort, a CO4: CO/ PO CO1 CO2 CO3 CO4	nd merge Understa PO01 3 2 2 2	PO02 3 3 3 3 3 3 3	PO03 3 3 3	PO04 3 3 3	pf disjoi PO05 1 1	int sets a	nd apply	the unio	on-find a	lgorithm	[K2]. PO11 1 2	PO12 2 2 3

Unit II Sparse Matrix Representation (Array and Link List representation) and arithmetic (addition, subtraction and multiplication), polynomials and polynomial arithmetic. Trees, Properties of Trees, Binary trees, Binary Tree traversal, Tree manipulation algorithms, Expression trees and their usage, binary search trees, AVL Trees, Heaps and their implementation, Priority Queues, BTrees, B* Tree, B+ Tree.	[10]
Unit III Sorting concept, order, stability, Selection sorts (straight, heap), insertion sort (Straight Insertion, Shell sort), Exchange Sort (Bubble, quicksort), Merge sort (External Sorting) (Natural merge, balanced merge and polyphase merge). Searching – List search, sequential search, binary search, hashing methods, collision resolution in hashing	[10]
Unit IV Disjoint sets representation, union find algorithm, Graphs, Graph representation, Graph Traversals and their implementations (BFS and DFS). Minimum Spanning Tree algorithms, Shortest Path Algorithms	[10]
 Text Books: [T1] Gilberg, R. F., & Forouzan, B. A. (2001). <i>Data structures: A pseudocode approach with</i> Brooks/Cole Publishing Co. [T2] Aho Alfred, V., Hopcroft John, E., Ullman Jeffrey, D., Aho Alfred, V., Bracht Glenn, H Hopkin [T3] Kenneth, D., & Johnson, C. A. (1983). <i>Data structures and algorithms</i>. USA: Addis Wesley. 	Ι.,
 Reference Books: [R1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction to algore MIT press. [R2] E. Horowitz, S. Sahni, S. Anderson-Freed, Fundamentals of Data Structures in C, 2nd E Silicon Press (US), 2007. 	

[R3] Weiss M.A., Data structures and algorithm analysis in C++, Pearson Education, 2014.

Paper (Code: A	ARA 206	5]	L	T/P	Credits
Subject	t: Fund	amenta	ls of Au	tomatio	n					4	-	4
	s Conti	nuous E		-		•		on norms f 1 norms fr			·	
INSTR	UCTIC	ONS TO	PAPER	R SETT	ERS: M	laximu	m Mar	ks: As pe	r Univers	ity Norı	ns	
$\begin{array}{ccc} \succ & Qu \\ & an \\ \succ & Ap \\ tw \\ be \\ \succ & Th \\ qu \end{array}$	uestion N swer typ part from o questi 15 marl ne questi estions t	No. 1 show be question on Question ons. How ks. ons are to to be aske	uld be co ons. It sho n No. 1, r vever, stu be frame ed should	mpulsor puld be o rest of the dent may ed keepin be at the	y and cov f 15 mar e paper s y be aske ng in vie e level of	ver the e ks. hall con ed to atte w the lea f the pre	ntire syll sist of fo empt onl arning ou scribed t	tion paper labus. This ur units as y 1 questio utcomes of extbooks. bles may be	per the syll on from eac course/pap	labus. Ev ch unit. E per. The s	ery unit sh ach questi tandard/ le	ould have
Course	Outco	mes [Blo	oom's K	nowled	ge Leve	el (KL)]	:					
CO1:	Ability	y of stud	ents to id	dentify s	suitable	automa	tion har	dware for	the given	applica	tion. [K1	,K2]
CO2:												
CO3:												nodels of
CO4:	production lines. [K1,K2,K3]											
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	3	3	2	2	2	1	1	1	3	3
CO2	3	3	3	3	2	2	2	1	1	1	3	3
CO3	3	3	3	3	2	2	2	1	1	1	3	3
CO4	3	3	3	3	2	2	2	1	1	1	3	3
Course Content No of lecture											No of lectures	
								ation, Soc d Automa				[10]

 production, Functions of Manufacturing, Organization and Information Processing in Manufacturing, Production concepts and Mathematical Models Fixed Automation: Automated Flow lines, Methods of Workpart Transport, Transfer Mechanism Continuous transfer, intermittent transfer and Indexing mechanism, Operator-Paced Free Transfer Machine, Buffer Storage, Control Functions and Automation for Machining Operations, Design and Fabrication Considerations Automation Application: Home, Library, Electronics Assembly, Mechanical Assembly, Material Removal, Quality Control and Inspection, Material Handling and Storage, Laboratory Automation 	
Unit II Automated Materials Handling: The material handling function, Types of Material Handling Equipment, Analysis for Material Handling Systems, Design of the System, Conveyor Systems, Automated Guided Vehicle Systems. Automated Storage Systems: Storage System Performance, Automated Storage/Retrieval Systems, Carousel Storage Systems, Work-in-process Storage, Interfacing Handling and Storage with Manufacturing Automated Manufacturing Systems-Components, Classification and overview of manufacturing systems, Cellular manufacturing, Flexible manufacturing system (FMS), FMS and its planning and implementation, automated assembly system – design and types of automated assembly systems, Analysis of multi station and single station assembly machine.	[10]
Unit III Analysis of Automated Flow Lines: General Terminology and Analysis, Analysis of Transfer Lines without Storage, Partial Automation, Automated Flow Lines with Storage Buffers. Automated Assembly Systems: Design for Automated Assembly, Types of Automated Assembly Systems, Vibratory bowl feeder and Non vibratory bowl feeder, Part Orienting Systems, Feed tracks, Escapements and part placing mechanism, Analysis of Multi-station Assembly Machines, Analysis of a Single Station Assembly Machine	[10]
 Unit IV Modeling Automated Manufacturing Systems: Role of Performance Modeling, Performance Measures, Performance Modeling Tools: Simulation Models, Analytical Models. The Future Automated Factory: Trends in Manufacturing, The Future Automated Factory, Human Workers in the Future Automated Factory, The social impact 	[10]
 Text Books: [T1] Groover, M. P. (2016). Automation, production systems, and computer-integrated manuface Pearson Education India. [T2] Asfahl, R. (1992). Robots and Manufacturing Automation, John Wiley&Son. [T3] Chang, Y. W., Zhu, K., Wu, G. M., Wong, D. F., & Wong, C. K. (1985). An Introduction to Automation Process Planning, Prentice-Hall International Series in Industrial and Systems Engineering. 	Ū
Reference Books:	DUU

[R1] Viswanadham, N., & Narahari, Y. (2015). *Performance modeling of automated systems*. PHI Learning Pvt. Ltd.

[R2] Stephen J. Derby, (2004) *Design of Automatic Machinery*, Special Indian Edition, Marcel Decker, New York, Yesdee publishing Pvt. Ltd, Chennai.

Credits

4

No of

Lectures

[10]

T/P

L

4

Paper code: ARI 208

Subject: Control Systems

Marking Scheme:

Teachers Continuous Evaluation: As per university examination norms from time to time.

End Term Theory Examination: As per university examination norms from time to time.

INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: As per University Norms

- > There should be 9 questions in the end-term examination question paper.
- Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be 15 marks.
- Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, students may be asked to attempt only 1 question from each unit. Each question should be 15 marks.
- The questions are to be framed keeping in view the learning outcomes of the course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks.
- > The requirement of (scientific) calculators/log tables/data tables may be specified if required.

Course Outcomes [Bloom's Knowledge Level (KL)]:

CO1 Ability of students to utilize concepts of control system components and mathematical modeling of electrical system, mechanical system, etc. [K1, K2, K3]
 CO2 Ability of students to identify and implement the concept of time response and frequency response

CO2 Ability of students to identify and implement the concept of time response and neque of the system. [K1, K3]

- CO3 Ability of students to utilize understanding of different plots such as Bode plot, Nyquist plot, Root locus method and Polar plot and implement them for robot applications. **[K2, K3, K4]**
- CO4 Ability of students to practically implement knowledge on joint space and task space control scheme in robots. **[K3, K4]**

CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	3	3	2	-	-	-	1	1	-	3
CO2	3	3	3	3	2	-	-	-	1	1	-	3
CO3	3	3	3	3	-	-	-	-	1	1	-	3
CO4	3	3	3	3	-	-	-	-	1	1	-	3

Course Content

Unit I

Introduction to Control System: Elements of control systems, concept of open loop and closed loop systems, Examples and application of open loop and closed loop systems. Concept of feedback and Automatic control, Effects of feedback. Transfer function of electrical, mechanical (translational and rotational) System. Force Voltage and Force Current analogies.

Transfer function model of AC & DC servomotor, potentiometer & tacho-generator. Block diagram reduction technique and signal flow graph, Mason's rule, Signal flow graph of electrical network.

Delhi - 110092

Conversion of BDR to SFG and vice versa.	
Unit II	
Time Domain Analysis: Time domain analysis of a standard second order closed loop system. Concept of un-damped natural frequency, damping, overshoot, rise time and settling time. Dependence of time domain performance parameters on natural frequency and damping ratio. Step and Impulse response of first and second order systems. Effects of Poles and Zeros on transient response. Stability by pole location. Routh-Hurwitz criteria and applications. Error Analysis: Steady state errors in control systems due to step, ramp and parabolic inputs. Concepts of system types and error constants. Root locus Techniques: Definition and properties of root locus, rules for plotting root locus, stability analysis using root locus. Frequency Domain Analysis: Polar plots, Bode plot, stability in frequency domain, Nyquist plots, Nyquist stability criterion. Gain margin and phase margin via Nyquist diagram and Bode plots.	[10]
Unit III: State Variable Analysis: Introduction to state variable, General state space representation, State space representation of Electrical and Mechanical systems. Conversion between state space and transfer function. Alterative representations in state space: (Phase variable, canonical, parallel & cascade). Similarity transformations, diagonalizing a system matrix. Laplace Transform solution of state equation, stability in state space, pole placement topology, controller design by pole placement topology in phase variable form, controllability, controllability matrix, controllability by inspection. Introduction to Observer/estimator, observability, observability matrix, observability by inspection.	[10]
Unit IV Introduction to the Compensator: Basic concept of compensator design, requirement, cascade compensator, feedback compensator, gain compensation, lag, lead, and lag-lead compensator, proportional, derivative, integral Compensation, physical realization of compensator with passive and active components, basic block diagrams of a compensated closed loop control system.	[10]
Textbooks:	
 [T1] Nise N. (2004) Control system engineering. 2nd edition [T2] Kuo B. C. (1995) Digital Control Systems, Oxford series. 2nd Edition [T3] Wilkie J, Johnson M., Katebi R. (2002) Control Engineering: An Introductory Course, Palgr MacMillan 	ave
Reference Books:	
 [R1] Dorf R.C., (1998) Modern control Engineering. SH Bishop, & Wesley edition, Eighth Edition [R2] J. J. Azzo, Houpis C. H., Sheldon S. N., Dekkar M. (2003). Linear Control Analysis and des with MaTLAB, ISBN 0824740386 	

Delhi - 110092

							Dean	1100			<u>_</u>	
Paper Cod	le: ARI	210								L	T/P	Credits
Subject: S	witchin	g Theoi	ry and Lo	ogic De	sign					4	-	4
Marking Teachers (End Term	Continuo	ous Eval		-		•						
INSTRU	CTIONS	S TO PA	APER SH	ETTER	S: Max	imum N	Iarks: A	As per U	J nivers i	ity Nori	ms	
> There	should	be 9 que	estions in	the end	term ex	kaminati	on quest	ion pape	er.			
> Ques	stion No	o. 1 sho	uld be co	ompulse	ory and	cover the	he entire	e syllab	us. This	s questi	on sho	uld have
objective			••••									
> Apart	-									-	•	•
unit shoul unit. Each					studen	ts may t	be asked	to atter	npt only	y I que	stion fr	om each
	 unit. Each question should be 15 marks. The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ 											
level of th					-		-					
\gg The re-	equireme	ent of (s	cientific)	calcula	tors/ log	g-tables/	data-tab	les may	be spec	cified if	require	d.
Course O	utcome	s[Bloon	n's Know	ledge I	level (k	(L)]:						
CO1	Understand number systems and its applications. [K1, K2]											
CO2	Minimize Boolean expressions and its applications to design digital circuits, design Combinational circuits using logic gates. [K1, K3, K4]											
CO3	Design	Sequen	tial logic	Circuits	s and its	s applica	tion with	n Digita	l Logic	Familie	s [K2,]	K3]
CO4	Analys	is of Sy	nchronou	s & Asy	nchron	ous Sequ	uential C	Circuits.	[K1, K	3]		
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	2	1	1	-	-	-	-	-	-	-	1
CO2	1	2	3	-	-	-	-	-	-	-	-	2
CO3	1	2	2	-	-	-	-	-	-	-	-	2
CO4	3	2	1	1	-	-	-	-	-	-	-	1
Course C	ontent			1		1			1			No of Lectures

Unit I Number systems – Decimal, Binary, Octal and Hexadecimal – conversion from one system to another - representation of negative numbers - representation of BCD numbers - character [10] representation - character coding schemes - ASCII - EBCDIC etc. Addition, subtraction, multiplication and division of binary numbers. Addition and subtraction of BCD, Octal and Hexadecimal numbers. Unit II Introduction — Postulates of Boolean algebra – Canonical and Standard Forms — logic functions and logic gates, methods of minimization of logic functions — Karnaugh map method [10] and OuinMcClusky method Product-of-Sums Simplification - Don't-Care Conditions **Combinational Logic**: Combinational Circuits: Analysis Procedure, Design procedure, Binary adder-subtractor, Decimal adder, Binary multiplier, Magnitude comparator, Multiplexers, Demultiplexers, Decoders, Encoders. **Unit III** Sequential Logic and Its Applications: Storage elements: latches & flip flops, Characteristic [10] Equations of Flip Flops, Flip Flop Conversion, Shift Registers, Ripple Counters, Synchronous Counters, Other Counters: Johnson & Ring Counter. Memory & Programmable Logic Devices: Digital Logic Families: TTL, CMOS Logic families, Fan Out, Fan in, Noise Margin; RAM, ROM, PLA, PAL. **Unit IV** Synchronous & Asynchronous Sequential Circuits: Analysis of clocked sequential circuits [10] with state machine designing, State reduction and assignments, Design procedure. Analysis procedure of Asynchronous sequential circuits, circuit with latches, design procedure, Reduction of state and flow table, Race-free state assignment, Hazards. **Text Books:** [T1] Mano M. M., Digital Logic & Computer Design, 4/e, Pearson Education, 2013 [T2] Floyd T. L., Digital Fundamentals, 10/e, Pearson Education, 2009. [T3] M. Morris Mano, Computer System Architecture, 3/e, Pearson Education, 2007. [T4] Harris D. M. and, S. L. Harris, Digital Design and Computer Architecture, 2/e, Morgan Kaufmann Publishers, 2013 **Reference Books:** [R1] Tokheim R. L., Digital Electronics Principles and Applications, 7/e, Tata McGraw Hill. [R2] Mano M. M. and M. D Ciletti, Digital Design, 4/e, Pearson Education, 2008.

[R3] Rajaraman V. and T. Radhakrishnan, An Introduction to Digital Computer Design, 5/e, Prentice Hall India Private Limited, 2012.

[R4] Leach D, Malvino A P, Saha G, Digital Principles and Applications, 8/e, McGraw Hill.

Delhi - 110092

										T		-
Paper c	ode: ARI	212								L	T/P	Credits
Subject	: Optimiz	ation Te	chniques							4	-	4
Teacher	g Scheme s Continuc m Theory	ous Evalu		-	•							·
INSTR	RUCTION	IS TO PA	APER SE	FTERS: N	Maximu	ım Mar	ks: As p	per Univ	versity	Norms		
	•	o. 1 should questions Question 2 nestions. H 5 marks. ns are to b be asked ment of (s s[Bloom' f students	d be compu s. It should No. 1, the r However, str be framed k should be a scientific) ca	lsory and c be of 15 m est of the p udents may eeping in v at the level alculators/ dge Level te the prob	cover the arks. baper sha be aske view the of the pr log-table (KL)]: blem giv	entire sy Il consist d to atter learning rescribed es/ data-ta	villabus. T t of four npt only outcome textbool ables ma	This ques units as p 1 questions of cour ks. y be spec	per the s on from rse/paper cified if	yllabus. each uni :. The sta required	Every un it. Each q andard/ le	it should uestion vel of the
CO2 CO3	problems	. convolu f students	s to unders ation netwo	orks and a	dversari	al netwo	orks. [K	1,K2,K	3]			
CO4		f students	s to unders	tand and i	mpleme	ent nume	erical teo	chniques	s for co	nstraine	d optimi	zation.
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	3	2	3	-	-	-	-	-	1	3
CO2	3	3	3	3	3	-	-	-	1	-	1	3
CO3	3	3	3	3	3	-	-	-	1	-	1	3
CO4	3	3	3	3	3	-	-	-	1	-	1	3
Course	Content	.	<u> </u>			<u>. </u>	<u> </u>	<u> </u>	<u>. </u>	.	<u> </u>	No of lecture:
feasible of grap Method	• Program e solutions phical met d, Alternau ut proof), I	, Degene hod, Sin te Optim	rate and an nplex men a, Duality	nd non-deg nethod, N in Linea	generate Iethod (ar Progr	solution of artific amming	ns, Simp cial var , Weak	olex metl iables: '	hod as a Two ph	lgebraio ase and	c version d Big-M	[14]

Approved by BoS of USAR: 15/06/2023, Approved by AC sub-committee: 4/07//23

Unit II Applications of Linear Programming: Modelling of Transportation problem, Methods for finding starting solution for transportation problems, Balanced transportation problem, Unbalanced transportation problem, Modelling of Assignment problem, Hungarian method for assignment problem	[6]
Unit III Numerical Techniques for Unconstrained Optimization Problems: Line search method for unimodal functions: Golden Section Rule and Fibonacci Search Method, Steepest descent method, Newton's method, Conjugate gradient method	[10]
Unit IV Numerical Techniques for Constrained Optimization: Penalty function method: exterior and interior point penalty, Barrier function method Multi-Objective Optimization: Efficient Frontier, Weighted Sum Approach	[10]
Text Books: [T1] Chandra, Suresh, Jayadeva, and Mehra, Aparna. <i>Numerical optimization with applications</i> . Science International, 2009. [T2] Bazaraa, Mokhtar S., Hanif D. Sherali, and Chitharanjan M. Shetty. <i>Nonlinear programmir theory and algorithms</i> . John Wiley & Sons, 2013.	-
 Reference Books: [R1] Nocedal, Jorge, and Stephen J. Wright, eds. <i>Numerical optimization</i>. New York, NY: Springer York, 1999. [R2] Taha, Hamdy A. <i>Operations research: an introduction</i>. Vol. 7. Upper Saddle River, NJ: Pren 2003. [R3] Fletcher, Roger. <i>Practical methods of optimization</i>. John Wiley & Sons, 2013. 	

DETAILED SYLLABUS FOR 5th SEMESTER

Approved by BoS of USAR: 15/06/2023,Approved by AC sub-committee: 4/07//23Applicable from Batch admitted in Academic Session 2022-23 OnwardsPage | 39

Delhi - 110092

Paper	Code:	ARI 30	5							L	T/P	Credits
Subje	ct : Dat	a Analy	vtics							4	-	4
Teacl		ntinuous			-	•			ns from ti s from tin			
INST	RUCT	IONS T	O PAP	ER SE	FTERS:	Maxim	um Mai	rks: As	per Univ	ersity N	orms	
> T	here sho	uld be 9	question	s in the e	end term	examinat	ion quest	ion pape	r.			
-	-			•	•		ntire syll	abus. Th	is question	n should h	nave objec	tive or
short a	answer ty	ype quest	tions. It	should b	e of 15 m	arks.						
≫ A	part from	n Questio	on No. 1	, the rest	of the pa	per shall	consist o	f four un	its as per	the syllab	us. Every	unit
should	d have tw	vo questi	ons. Hov	vever, st	udents m	ay be ask	ed to atte	mpt only	/ 1 questic	on from ea	ach unit. E	lach
		d be 15 r		,		-			*			
➤ T	he questi	ions are t	o be frai	ned keei	oing in vi	ew the le	arning ou	itcomes of	of course/	paper. Th	e standard	level of
	-			-	Ū	f the pres	0		1	Ĩ		
•						•			be specifie	d if roau	irad	
	•		-	-		vel (KL)						
C O 1	Ability	of stud	ents to u	understa	and the b	asics coi	ncepts of	Data A	nalytics	[K1, K2]		
CO2	Ability	of stud	ents to a	apply an	ıd analyz	ze variou	s classif	ication a	and regre	ssion tec	hniques [K3,K4]
C O 3	Ability K2, K 3		ents to u	understa	nd mini	ng freque	ent items	sets and	apply clu	stering t	echnique	s [K1,
C O 4	Ability	of stud	ents to u	understa	nd Big o	lata fram	neworks	[K1,K2]			
CO /												
PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	2	1	1	3	-	-	-	2	2	1	2
CO2	3	3	3	3	3	-	-	-	3	3	4	2
CO3	3	2	1	1	3	-	-	-	2	2	1	3
CO4	3	3	3	3	3	-	-	-	3	3	3	3
Cour	se Cont	ent										No of lectures

 Unit I Introduction to Data Analytics: Sources and nature of data, classification of data (structured, semi-structured, unstructured), characteristics of data, introduction to Big Data platform, need of data analytics, evolution of analytic scalability, analytic process and tools, analysis vs reporting, modern data analytic tools, applications of data analytics. Data Analytics Lifecycle: Need, key roles for successful analytic projects, various phases of data analytics lifecycle – discovery, data preparation, model planning, model building, communicating results, operationalization. 	[10]
Unit II Data Analysis: Data preprocessing, feature engineering, dimension reduction, Regression modelling: linear regression, non linear regression, regularized regression, Neural Networks: learning and generalisation, perceptron, logistic regression, Bayesian modeling, support vector and kernel methods, K- Nearest Neighbour Classifiers, analysis of time series: linear systems analysis & nonlinear dynamics.	[12]
Unit III Frequent Itemsets and Clustering: Mining frequent itemsets, market based modelling, Apriori algorithm, handling large data sets in main memory, limited pass algorithm, counting frequent itemsets in a stream, clustering techniques: hierarchical, K-means, clustering high dimensional data, DBSCAN, CLIQUE and ProCLUS.	[10]
Unit IV Frame Works: MapReduce, Hadoop, Pig, Hive, HBase, MapR, Sharding, NoSQL Databases, S3, Hadoop Distributed File Systems Visualization: visual data analysis techniques, interaction techniques, systems and applications. Case studies – Real time sentiment analysis, stock market predictions.	[10]
Text Books: [T1] David Dietrich, Barry Heller, Beibei Yang, (2015). Data Science and Big Data Analyt EMC Education Series, John Wiley	ics,
 Reference Books: [R1] Sebastian Raschka, Vahid Mirjalili, (2019), Python Machine Learning - Third Edition, Publisher. [R2] Tom M. Mitchell, (1997). Machine Learning, McGraw-Hill [R3] Duda, R. O. & Hart, P. E. (2006). Pattern Classification. John Wiley & Sons. 	Pact

Paper	Code: A	RI 307								L	T/P	Credits
Subjec	t: Princi	ples of Co	ommunic	ation S	ystems					4	-	4
Teacher		me: luous Eval ry Examina		-	•							
INSTE	RUCTIC	ONS TO P	APER S	ETTER	S: Maxi	mum M	arks: A	ls per U	Inivers	sity Noi	rms	
> The	ere should	d be 9 quest	tions in the	e end ter	m examir	nation que	estion pa	per.				
-		b. 1 should b	•	•		e entire sy	/llabus.	This que	stion sh	nould hav	ve objec	tive or
	• •	e questions. Question No				all consist	t of four	units as	ner the	syllabus	s Everv	unit
		questions.							•	•	•	
•		be 15 marks						c	,	-		/1 1 2
	•	ns are to be be asked sh		1 0		0			rse/pap	er. The s	standard	level of
•		nent of (sci			•				cified i	f require	ed.	
Cours		mes [Bloo	m's Kno	مولماس	L ovol (k	<u>л)</u> .				•		
Cours				wieuge		L)]•						
CO1	Unders	stand the ba	asic conc	epts of a	analog co	ommunic	ation sy	/stem []	K1, K2	2]		
CO2		te the pe Jues. [K1,				ntal bloc	ks con	stitutin	g vari	ous an	gle mo	dulation
CO3		the princip ation techn		1 0		0	-		ulation	approa	ches an	d digita
CO4	Unders	stand about	t the basi	c concej	pt of Cor	nmunica	tion Net	tworks.	[K1, ŀ	K2]		
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	2	-	-	1	-	-	-	-	-	-	2
CO2	3	2	-	-	1	-	-	-	-	-	-	2
CO3	3	3	3	-	-	_	-	-	-	1	2	2
CO4	3	2	-	3	-	-	-	-	-	-	-	-
												No of

.

Unit I Amplitude Modulation: Need for modulation, Amplitude Modulation - Generation of AM waves, frequency discrimination and Phase discrimination methods for generating SSB, Demodulation of SSB Waves, principle of Vestigial sideband modulation.	[10]
Unit II Angle Modulation: Angle Modulation fundamentals, Frequency Modulation – Modulation index and sidebands, Narrowband FM, Wideband FM, Principles of Phase Modulation, Frequency Modulation verses Amplitude Modulation, FM demodulation	[10]
 Unit III Pulse Modulation: Types of Pulse modulation- PAM, PWM and PPM. Comparison of FDM and TDM. Pulse Code Modulation: PCM Generation and Reconstruction, Quantization Noise, Non-Uniform Quantization and Companding, DPCM, Adaptive DPCM, DM and Adaptive DM. 	[10]
Unit IV Digital Modulation Techniques: ASK- Modulator, Coherent ASK Detector, FSK- Modulator, Non- Coherent FSK Detector, BPSK- Modulator, Coherent BPSK Detection. Principles of QPSK, Differential PSK and QAM.	[10]
Text Books: [T1] J. G. Proakis and M. Salehi, <i>"Fundamentals of Communication Systems,"</i> Prentice Hal [T2] S. Haykin, <i>"Communication Systems,"</i> John Wiley & Sons, 5th Ed., 2009.	1, 2004.
Reference Books: [R1] B.P. Lathi and Z. Ding, Modern Digital and Analog Communication Systems, 4th Ed., 0 University Press, 2009. [R2] Louis E. Frenzel, Principles of Electonic Communication Systems, 3rd Ed., Tata McGr 2008. [R3] Dennis Roddy and John Coolen, Electronic Communications," 4th Ed., Pearson, 2008.	

Paper	Code: A	RI 309								L	T/P	Credits
Subject	t: Softwa	are Engi	neering							4	0	4
Teacher		uous Ev		-		•	nation no ation nor					
INSTR	UCTIO	NS TO I	PAPER	SETTE	RS: Max	ximum I	Marks: a	s per U	niversity	norms		
AAA	Question or short a Apart fro should h The ques level of t	n No. 1 si answer ty om Ques ave two stions are the quest	hould be ype ques tion No. question e to be fr ions to b	compul tions. 1, the re s. Howe amed ke be asked	sory and est of the ver, stud eeping in should b	cover the paper sheets may view the e at the 1	nall consi y be aske e learning level of t	syllabus. ist of fou of to atte g outcom he presc	This qu r units as mpt only nes of co ribed tex	s per the 1 questi urse/pap tbooks.	syllabus	
CO1: S CO2: C CO3: S CO4: S CO/P	Capability Student w	vill be ab y to perfo yould be	le to und orm requ able to n	lerstand lirement neet and	the conc analysis understa	epts of S and proj and the d		ning of s d reliabil	oftware s lity of so	systems. ftware sy	[K2, K3 ystems. [^{6]} K1, K2, K4] PO12
0 CO1	3	3	3	3	2	PO00	P007	PU00	1	1	1	2
CO2	3	3	3	3	2	-	-	-	1	2	1	2
CO3	3	3	3	3	2	-	-	-	1	1	1	3
CO4	3	3	3	3	3	2	-	-	1	1	1	3
Course	Conten	t	1	1	<u> </u>	I	<u> </u>	1	<u> </u>	I	<u> </u>	No of lectures
Increm	nent Proc opment n	ess Mod	els, Prot	otype M	odel, RA	D, Spira	are proce al Model, lopment,	, Rationa	l Unified	l Process	s) Agile	[10]

Unit II Software Requirement Analysis and Specification: Software Requirement Process, Functional and non-functional requirements, Quantifiable and Quality Requirements, System and software Requirements, requirement elicitation methods, requirement analysis and validation, requirement review or requirement change, SRS document. System modelling: Interaction models: Use case diagram, sequence diagrams, Structural models: class diagrams, generalization, aggregation, Behavioural models: ER diagrams, Data flow diagrams, data dictionaries.	[10]
Unit III Software Metrics: Project Metrics, Product Metrics and Process Metrics. Information flow Model Software Design: Architectural views and patterns, Modularity (cohesion and coupling), Information hiding, Functional independence, Function Oriented Design, Object Oriented Design, User Interface Design.	[10]
Unit IV Software Testing: Software process, Functional testing: Boundary value analysis, Equivalence class testing, Decision table testing, Cause effect graphing, Structural testing: Path testing, Data flow and mutation testing, unit testing, integration and system testing, User testing (alpha, beta and acceptance testing).	[10]
 Text Books: [T1] Pressman, R. S. (2005). Software engineering: a practitioner's approach. Palgrave Macmillar [T2] Aggarwal, K. K. (2005). Software engineering. New Age International. [T3] Ian Sommerville, "Software Engineering", 10th edition, Pearson, 2018. 	1.
 Reference Books: [R1] Sommerville, I. (2011). Software Engineering, 9/E. Pearson Education India. [R2] Jalote, P. (2012). An integrated approach to software engineering. Springer Science & Busin [R3] Bruegge, B., & Dutoit, A. H. (2009). Object-oriented software engineering. using uml, patter java. Learning, 5(6), 7. [R4] Blaha, M., & Rumbaugh, J. (2005). Object-oriented modeling and design with UML. Pearson India. 	erns, and

Programme Core Electives for 5th Sem (PCE-1)

Paper	r code: A	RI 311								L	T/P	Credits
Subje	ect: Intro	oduction	to Semio	conduct	or Devic	ces				4	-	4
Teach		eme: inuous Ev eory Exai		-		•						
INST	RUCTI	ONS TO	PAPER	R SETT	ERS: M	aximum	Marks:	As per U	U nivers	ity Norn	ns	
> short > should questi > ' the qu	Question answer ty Apart from d have two ion should The quest restions to	ld be 9 qu No. 1 sho pe questio n Questio o questior l be 15 ma ions are to be asked rement of	uld be con ons. It sho n No. 1, t ns. Howev arks. o be frame should be	npulsory uld be of he rest o ver, stude ed keepin e at the h	and cover f 15 mark f the pape ents may b ng in view evel of the	er the enti s. er shall co be asked t v the learn e prescrib	re syllabu nsist of fo o attempt ing outco ed textboo	s. This qu our units a only 1 qu mes of co oks.	s per the lestion fr burse/pap	syllabus om each er. The s	. Every u unit. Eac tandard/	nit h
Cour	se Outco	omes[Blo	oom's Ki	nowledg	ge Level	(KL)]:						
CO1	Student	s will une	derstand	and app	ly variou	ıs Equilit	orium asp	ects of S	emicon	ductors.	[K1, K2	2, K3]
CO2	Ability o	of student	s to unde	erstand t	he carrie	r transpo	rt phenoi	menon in	semico	nductors	s. [K1, F	K2, K3]
CO3		and the value of t			luctor-ba	sed switc	ching and	l optoeled	ctronic o	levices u	ised in	
CO4	Underst	and the v	vorking o	of basic	to advan	ced semi	conducto	or memor	ies. [K 3	3, K4].		
CO/ PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	2	3	1	0	0	0	0	1	0	3
CO2	3	3	2	3	1	0	0	0	0	1	0	3
CO3	3	3	2	3	2	0	0	0	0	1	0	3
CO4	3	3	3	3	2	0	0	0	0	1	0	3
Course Content											No of lectures	

Approved by BoS of USAR: 15/06/2023,Approved by AC sub-committee: 4/07//23Applicable from Batch admitted in Academic Session 2022-23 OnwardsPage | 46

Unit I

Energy bands and carrier concentration in thermal Equilibrium: Introduction to semiconductor devices and technology, Elemental and compound semiconductors, Basic crystal structures and Miller Indices, Imperfections and Impurities in Solids, Electron effective mass, Concept of the Hole, Energy Bands in Metals, Semiconductors and Insulators, Intrinsic and Extrinsic Semiconductors, Intrinsic Carrier Concentration and Fermi-Dirac Distribution, Boltzmann Approximation, Fermi Energy at Low Temperatures, Donors and acceptors, Degenerate and Non-degenerate semiconductor, III-V Semiconductors, Direct and indirect bandgap semiconductors.

Unit II

Carrier Transport Phenomena: Mobility, Resistivity, The Hall effect, Diffusion process, Current density equation, Direct recombination, Quasi-fermi level, Indirect recombination, Surface recombination, Shockley-read-Hall recombination, Auger Recombination, Steady-state injection from one side, Minority carriers at the surface, Thermionic emission process, Tunnelling process, Space-Charge Effect, High-field effects, Energy bands under electric fields, Effect of temperature in Semiconductors.

Unit III

Semiconductor Devices: p-n junction band diagram, Space Charge, Abrupt Junction, Linearly Graded Junction, Depletion Capacitance, Diffusion Capacitance, Junction Breakdown, Current-Voltage Characteristics, Qualitative analysis of Bipolar Junction Transistor, Nonideal Effects in BJT, Ideal MOS Capacitor, Si-SiO₂ MOS Capacitor, Carrier Transport in MOS Capacitors, Charge-Coupled Devices, MOSFET characteristics types and threshold voltage control, Qualitative study of Advanced MOSFET and Related Devices: MOSFET Scaling, Silicon-on-Insulator, Three-dimensional FETs

Optoelectronic devices: Radiative Transitions and Optical Absorption, LEDs structures and characteristics, LEDs and their luminescent efficiency, Various Types of LEDs, Basic Semiconductor Laser, Basics of Photodetectors

Unit IV Semiconductor Memories: Types of memories, RAM array organization, DRAM-Types, Operation, Leakage currents in DRAM cell and refresh operation, SRAM operation Leakage currents in SRAM cells, Non-volatile memory- Floating-Gate Devices, Flash Memory-NOR flash and NAND flash, Charge-trapping Devices. [8]

Text Books:

- [T1] S. M. Sze and M. K. Lee, (2016) *Semiconductor Devices Physics and Technology*, John Wiley & Sons, INC., 3rd edition.
- [T2] Donald A. Neamen, (2012) *Semiconductor Physics and Devices Basic Principles*, McGraw-Hill Higher, 4th edition.

Reference Books:

- [R1] Mykhaylo Evstigneev, (2022) Introduction to Semiconductor Physics and Devices, Springer, 1st edition.
- [R2] R Shimeng Yu, (2022) *Semiconductor Memory Devices and circuits*, CRC Press Taylor & Francis Group, 1st edition.

Delhi - 110092

Paper c	ode: A	RI 313]	Ľ	T/P	Credits
Subject	: Smar	t Grids	and Se	ensors						2	4	-	4
Marki	ng Sche	eme:											1
				-		•			ns from ti				
									from tim				
									per Univ	ersity No	rms		
 Quans Aphaves The short The quee The short 	estion N swer typ part from ve two o puld be e questions t e require Outco Ability grid [] Ability	No. 1 sho be question question 15 mark ons are to to be ask ement of omes [B y of stu- y of stu- K2, K3 , y of stu-	ould be o ons. It sh on No. 1 s. Howe s. to be fra ted shoul f (scienti cloom's dents to dents to sK4]	nould be of the rest wer, stude med keep ld be at the ific) calcu Knowle understa	ry and c of 15 ma of the p ents may bing in v ie level c ilators/ le dge Le and the and, ap	over the rks. aper sha be ask iew the of the pro og-table vel (KL basics c ply and	e entire sy all consis ed to atte learning escribed s/ data-ta a)]: concepts analyze	vilabus. T t of four empt only outcomes textbooks bles may of conve the prot	his question units as performed of course be specifient entional a rection de	er the sylla on from ea /paper. Th ed if requi nd smart evices and	abus. ach u ne sta red grid I sen	Every u nit. Eac ndard/ h [K1, K sors in	ve or short init should h question evel of the [2] the smart nonitoring
C O 4	smart	grid [K	1, K2].						r quality				
		1		_	1	r			1: Low, 2		1	-	1
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10		PO11	PO12
CO1	3	3	3	2	3	-	-	-	-	1		1	2
CO2	3	3	3	3	3	-	-	-	1	1		2	2
CO3	3	3	3	3	3	-	-	-	1	1		2	3
CO4	3	3	3	3	3	-	-	-	1	1		2	3
Average Course	3 e Conte	3 ent	3	2.75	3	-	-	-	1	1		1.75	2.5 No of lectures
grid, S	mart g	rid driv	vers, fui	nctions,	opportu	inities,	challeng	es and	Definitior benefits, mart grid	Difference			[8]
Unit II Smart	Grid F	Protecti	on Dev	ices and	Senso	rs: Prot	ective F	elays/se	nsors–Re ation of re	quiremen			[12]

Over Voltage, Directional, Differential and Distance relays, Impedance mho & reactance relay, Analog & digital relays. Circuit Breakers– An operation of Bulk oil and Minimum oil circuit breakers, Air circuit breaker, SF6 and vacuum circuit breakers, DC circuit breakers, HRC fuses, current limiting reactors & their design features, Testing of circuit breaker.	
Unit III Smart Meters and Advanced Metering Infrastructure: Introduction to SmartMeters, Advanced Metering Infrastructure (AMI) drivers and benefits, AMI protocols, standards, and initiatives, AMI needs in the smart grid, Phasor Measurement Unit (PMU), Intelligent Electronic Devices (IED) and their application for monitoring & protection.	[08]
Unit IV Power Quality Management and Computing in Smart Grid: Power Quality & EMC in Smart Grid, Power Quality issues of grid-connected renewable energy sources, Power quality conditioners for Smart Grid, Web-based power quality monitoring, Power quality audit. Local Area Networks (LAN), House Area Networks (HAN), Wide Area Networks (WAN), Broadband over Power line (BPL), IP based Protocols, Basics of Web Service and CLOUD Computing to make Smart Grids smarter, Cyber Security for Smart Grid.	[12]
Text Books: [T1] Stuart Borlase "Smart Grid: Infrastructure, Technology and Solutions", CRC Press2012. [T2] Janaka Ekanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, Akihiko Yokoyama, "S Grid: Technology and Applications", Wiley 2012.	mart
Reference Books: [R1] VehbiC. Güngör, Dilan Sahin, Taskin Kocak, Salih Ergüt, Concettina Buccella, Carlo Ceca Gerhard P. Hancke, "Smart Grid Technologies: Communication Technologies and Standard Transactions on Industrial Informatics, Vol.7, No.4, November 2011.	

[R2] James Momohe "Smart Grid: Fundamentals of Design and Analysis,", Wiley-IEEE Press, 2012.

Delhi - 110092

Paper of	code:A	ARI 315	5							L	T/P	Credits
Subjec	t : Ope	rating	System	S						4	0	4
	s Conti	nuous H			-	•				n time to time to		
INSTR	UCTIO	ONS TO	O PAP	ER SE	ITERS	: Maxin	num Ma	arks: A	ls per U	niversit	y Norms	
\gg	There s	hould be	e 9 quest	tions in	the end t	erm exan	nination	questio	n paper			
≫	Questio	n No. 1	should	be comp	oulsory a	nd cover	the entir	e syllab	us. This	question	should ha	ve
	•				uestions.							
	•	-				• •				•	ne syllabu	•
	unit shoi unit.	uiu nave	iwo qu	esuons.	поweve	r, student	is may b	e asked	to attem	pi only I	question 1	rom each
>	The que	estions a	re to be	framed	keeping	in view t	he learn	ing outc	omes of	course/pa	aper. The	standard/
		-						-		extbooks.		
≫	The req	uiremen	t of (sci	entific)	calculato	ors/ log-ta	ables/ da	ta-table	s may be	e specified	l if require	ed
Course	Outco	mes [B	loom's	Know	ledge L	evel (KI	_)]:					
CO1	To lea [K1,K		underst	and the	basic c	oncepts	of Oper	ating S	ystem a	nd memo	ory mana	gement.
CO2	To ap	ply the	concept	t of pro	cess ma	nagemei	nt. [K3]					
CO3	To des	scribe tl	he conc	ept of c	levice m	nanagem	ent. [K	2]				
CO4	To un	derstand	d the co	oncept o	of virtua	lization.	[K2]					
CO/ PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	3	3	1	-	-	_	-	-	1	2
COI	5	5	5	5	1	-					Ŧ	
CO2	3	3	3	3	1	2	-	-	-	-	1	2
CO3	3	3	3	3	1	2	-	-	-	1	2	3
CO4	3	3	3	3	1	2	-	-	-	2	2	3
Course	Conte	nt										No. of Lectures

Unit I

 Unit I Introduction: Introduction: What is an Operating System, Simple Batch Systems, Multiprogrammed Batches systems, TimeSharing Systems, Personal-computer systems, Parallel systems, Distributed Systems, Real-Time Systems, OS – A Resource Manager. Processes: Introduction, Process states, process management, Interrupts, Interprocess Communication Threads: Introduction, Thread states, Thread Operation, Threading Models. Processor Scheduling: Scheduling levels, preemptive vs nonpreemptive scheduling, priorities, scheduling objective, scheduling criteria, scheduling algorithms, demand scheduling, real time scheduling. Process Synchronization: Mutual exclusion, software solution to Mutual exclusion problem, hardware solution to Mutual exclusion problem, semaphores, Critical section problems. Case study on Dining philosopher problem. 	[10]
Unit II Memory Organization & Management: Memory Organization, Memory Hierarchy, Memory Management Strategies, Contiguous versus non- Contiguous memory allocation, Partition Management Techniques, Logical versus Physical Address space, swapping, Paging, Segmentation, Segmentation with Paging Virtual Memory: Demand Paging, Page Replacement, Page-replacement Algorithms, Performance of Demand Paging, Thrashing, Demand Segmentation, and Overlay Concepts	[10]
 Unit III Deadlocks: Examples of deadlock, resource concepts, necessary conditions for deadlock, deadlock solution, deadlock prevention, deadlock avoidance with Bankers algorithms, deadlock detection, deadlock recovery. Device Management: Disk Scheduling Strategies, Rotational Optimization, System Consideration, Caching and Buffering File System: Introduction, File Organization, Logical File System, Physical File System , File Allocation strategy, Free Space Management, File Access Control, Data Access Techniques, Data Integrity Protection. 	[10]
Unit IV Virtualization : Introduction to Virtualization, Virtual Machine, Type of virtualization, Hypervisors	[10]
 Text Books: [T1] Deitel, H. M. (1990). An introduction to operating systems. Addison-Wesley Longy Publishing Co., Inc [T2] Silberschatz, A., Galvin, P. B., & Gagne, G. (2006). Operating system concepts. Jo & Sons. [T3] Portnoy, M. (2012). Virtualization essentials (Vol. 19). John Wiley & Sons. Reference Books: [R1] Tannenbaum (2000). Operating Systems. PHI, 4th Edition. [R2] Godbole, A. S. (2005). Operating systems. Tata McGraw-Hill Education. [R3] Dhamdhere, D. M. (2006). Operating systems: a concept-based approach, 2E. Tat McGraw-Hill Education. 	hn Wiley

DETAILED SYLLABUS FOR 6th SEMESTER

Approved by BoS of USAR: 15/06/2023,Approved by AC sub-committee: 4/07//23Applicable from Batch admitted in Academic Session 2022-23 OnwardsPage | 52

Delhi - 110092

Paper co		_	1									
	de: AR	I 304								L	T/P	Credits
Subject:	Electro	nic Des	ign Aut	omatio	n for VI	LSI				4	0	4
Marking Teachers End Tern	Continu n Theory	ious Eva y Exami	nation: A	As per u	niversit	y exami	nation n	orms fro	om time	to time.		
INSTRU								-	Univer	sity Nor	rms	
answer ty 3. Apart f two quest marks.	on No. 1 pe questi rom Questions. How estions and to be ask	should t ons. It sh stion No. wever, st re to be fi ted shoul	be compu- nould be 1, the re udents m ramed ke d be at th	alsory ar 15 marks ast of the hay be as beeping in he level of	nd cover s. paper sh ked to at view the of the pre	the entir all consist tempt on e learning scribed t	e syllabi st of four ly 1 ques g outcom extbooks	units as stion fror es of the s.	per the s n each u course/p	yllabus. H nit. Each paper. The	Every unit question s	tive or shor should have hould be 15 level of the
Course (-				-							
				-			ts of VI	SIphys	ical des	ign and a	automatio	n. [K1,K2]
CO2: TI						-				0	utomutio	
CO3: 11	ustratin	g the ED	DA simu	lator for	circuit	design a	and circu	it simul	ation pr	ocess. [K	· -	
CO4: U: [K2,K3,]		d, apply	y and an	alyze th	e layout	designi	ng of va	trious V	LSI circ	uits and	devices.	
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
C O 1	3	3	2	3	3	0	0	0	0	1	0	3
CO2	3		2	3	3	0	0	0	0	1		
	Ŭ	3	2	J		Ŭ	0	0	0	T	0	3
	3	3	2	3	3	0	0	0	0	1	0	3
CO3					3			-				
CO2 CO3 CO4 Course (3	3	2	3		0	0	0	0	1	0	3
CO3 CO4 Course (Unit I Physica architec debugg intercor synthes Placements signal p	3 3 Content al Design etural, be ing, nev inect are is, high ent, Rou planning	3 3 Auton ehaviour w trends ea, incre h-level s ting, Ext	2 3 mation: 1 ral, logic s in VI easing nu synthesi traction routing,	3 3 Basics of c, circuit LSI des umber of s, Phys and Ver Design	3 of VLSI a t, & phy sign cyc of metal sical de ification of Styles:	0 0 0 automat sical de cle: Inc layers, sign cy i, New tr Full co	0 0 ion, Des sign, fab reasing increasing rcle: Pa rends in p ustom, s	0 0 ign cycl orication intercor ng planr rtitionin physical standard	0 0 0 e: system , package inect de ing req g, Floc design cell, G	1 1 m specifi ging, test elay, ind uirement or-planni cycle: ch ate arra	0 0 cations, ting and creasing ts, logic ng and hip level	3 3 No of

Approved by BoS of USAR: 15/06/2023, Approved by AC sub-committee: 4/07//23 Applicable from Batch admitted in Academic Session 2022-23 Onwards Page | 53

integrated circuits, material growth and oxidation: silicon dioxide, silicon nitride, Polycrystalline silicon, metals, doped silicon layers: diffusion & ion implantation, chemical mechanical polishing, Lithography: clean room, nMOS, pMOS fabrication steps, CMOS process flow, field oxide, shallow trench isolation.	
Unit III Circuit simulator: Simulator basics and type of simulators, historical perspective, circuit simulations: DC analysis: sweeping a source, the. dc statement, printing output, plotting output, graphics output, subcircuits, Ac analysis: specifying input source, Plotting bode plot, plotting group delay, input impedance, plotting output impedance, Noise analysis: the .noise statement, print and plot output, signal to noise, inserting noise source, Transient analysis: Simulating time, specifying input source, the . trans statement, graphic output and calculation, setting initial conditions, transient solution for static problems, distortion and spectral analysis: Fourier decomposition, the . four statement, large signal distortion, harmonic recomposition, intermodulation distortion.	[10]
Unit IVLayout Simulation: MOSFET Scaling and short channel effects, Layout design rules: micron & lambda rules: size rules, separation rules, overlap rules, Layouts of basic devices: nMOS, pMOS, Basic gate design: CMOS Inverter, NAND, NOR, Transmission Gate, Memory cells: 6T SRAM, DRAM.Basics of EDA tools: Layout and basics of simulators: Layout editor, Extraction, Design rule 	[10]
Fextbooks: [T1] Naveed Sherwani (2002) Algorithms for VLSI Physical Design Automation, Kluwe Academic Publishers [T2] John P. Uyemura (2001) Introduction to VLSI Circuits and Systems, Wiley India. [T3] Paul W. Tuinenga, (1993) SPICE A guide to circuit simulation and analysis using PSPICH Prentice Hall.	
Reference Books: [R1] S. M. Sze (2017) VLSI Technology, 2nd Edition, McGraw Hill. [R2] Kenneth S. Kundert () The designer's guide to SPICE and SPECTRE, Kluwer Academi Publishers.	ic

										1	r	
Paper o	ode: ARI	306								L	T/P	Credits
Subject	: Embedd	led Syste	ems							4	0	4
Teacher	n g Scheme rs Continue rm Theory	ous Eval		-	•							
	UCTION											
	There shou Question N answer type Apart from have two queshould be 1 The questions to The require	 o. 1 should e question Questions. 1 5 marks. ons are to b be asked 	ld be com is. It shou No. 1, th However, be framec I should b	pulsory an ld be of 15 e rest of th students n d keeping i e at the lev	d cover the marks. e paper sh nay be ash n view the vel of the	ne entire nall consi ced to att e learning prescribe	syllabus. ist of fou empt onl g outcom	This que r units as y 1 quest aes of con oks.	per the s tion from arse/paper	yllabus. E each unit :. The stai	Every unit . Each qu	t should estion
	Outcome				-			5 1		1		
CO1	Students						hitecture	e of Mic	rocontro	llers [K1	,K2,K3	
CO2	Ability of configura	fstudents	to under	rstand the								
CO3	Analyze t program (rs of AV	R micro	controll	er along	and eval	uate out	put with	the C
CO4	Understar devices. [of AVR r	nicrocon	troller a	nd apply	it to va	rious ele	ctronic a	nd electi	ical
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	3	2	2	-	-	-	-	1	1	2
CO2	3	3	2	3	3	-	-	-	1	1	2	2
CO3	3	3	2	3	3	-	-	-	1	1	2	3
CO4	3	3	2	3	3	-	-	-	1	1	2	3
Course	Content						•					No of lectures
Applic Embed Overvi	uction of ations, Re lded Syste ew of Har ecture of 8	ecent Tr em Designard vard arc	ends in gn, Emb hitecture	the Emb edded So and Von	edded S oftware c Neuman	ystem] lesign i n archite	Design, ssues. I	Common Co	on architi ion to r	tectures nicrocon	for the trollers,	[8]

Unit II

AVR Microcontroller: Introduction to AVR Microcontroller, Architecture and Pin Configuration, Register and memory mapping, Status Register, Instruction set, Data Transfer Instructions, Arithmetic and Logic Instructions, Branch Instructions, Bit and Bit-test Instructions, MCU Control Instructions, Delay time loop.	[10]
Unit III Interrupts and Timer: Introduction to System Clock, Reset sources, Introduction to interrupts, External interrupts, UART- Basic Operation, I/O Register configuring, IO Ports, 8-bit and 16-bit Timer block diagram, Modes- Output Compare Mode, Fast PWM Mode, CTC Mode, Simple programs in C Language, AVR I/O Port Programming.	[12]
Unit IV Peripherals Interfacing: Analog Comparator, ADC, DAC and sensor interfacing, Serial Peripheral Interface (SPI), The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART), Two Wire Interface (TWI), I2C Protocol and RTC interfacing, 7-Segment LED Display, LCD and Keyboard Interfacing, Opto-isolator and Stepper Motor Interfacing, Relay.	[10]
 Text Books: [T1] Muhammad Ali Mazidi,Shujen Chen, Sepehr Naimi,Sarmad Naimi, Embedded Programmi C Language, 1st Edition, Freescale ARM Cortex-M. [T2] Dhananjay Gadre, (2001) Programming and Customizing the AVR Microcontroller, McGra Education. 	0 0
Reference Books:	

[R1] Steve Ferbur, ARM System on Chip.

[R2] Rajkamal, Embedded System: Architecture, Programming and Design, TMH3.

Programme Core Electives for 6th Sem (PCE-2, PCE-3)

Paper (Code: A	RI 3127								L	T/P	Credits
Subject	t : Cybe	r Securi	ty and I	Digital	Forens	ics				4	0	4
Teacher End Ter	rm Theo	nuous Ev ory Exam	ination:	As per	univers	rsity exa sity exan ⁄Iaximu i	nination	norms	from ti	me to ti	me.	
AAA	Question objective Apart fro should ha Each ques Ihe ques level of t	No. 1 see or short om Questi ave two q estion sho stions are he questi	should be answer ty ion No. 1 uestions. uld be 15 to be framons to be	e comp ype que , rest of Howev marks med kee asked s	ulsory a stions. It f the pap yer, stude eping in should be	n examina nd cover t should b er shall c ent may b view the e at the le	the ent e of 15 r onsist of e asked learning vel of th	tire sylla marks. f four un to attemy g outcom	abus. The second	er the syl 1 questio purse/pap	labus. Ev n from ea	very unit ach unit.
Course	Outcor	nes [Blo	om's Kı	nowled	lge Lev	el (KL)]	•					
CO1:	Ability [K1, K		ents to ur	ndersta	nd the c	oncept o	f cyber	security	, cybei	crimes	and cyt	ber laws
CO2:	-					asic secu K1, K2].	• •	oects, un	nderlyir	ng legal a	aspects a	and best
CO3:	-					asic digit tal devic			d techni	iques foi	r conduc	ting the
CO4:		of stude				/ forensio [4] .	e analys	sis tools	to reco	over imp	ortant e	vidence
Course	Outcor	nes (CO) to Pro	gramn	ne Outo	comes (P	O)					
CO/P O	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	-	-	-	1	2	1	2
CO2	3	3	3	3	3	-	-	-	2	2	2	2
CO3	3	3	3	3	2	-	-	-	1	2	1	2
CO4	3	3	3	3	3	-	-	-	2	2	2	2

Delhi - 110092

Course Content	No of lectures
Unit I Introduction to Cyber security: Defining Cyberspace and Overview of Computer and Web- technology, Architecture of cyberspace, Communication and web technology, Internet, World wide web, Advent of internet, Internet infrastructure for data transfer and governance, Internet society, Regulation of cyberspace, Concept of cyber security, Issues and challenges of cyber security.	
Cyber crime and Cyber law: Classification of cyber crimes, Common cyber crimes- cyber crime targeting computers and mobiles, cyber crime against women and children, financial frauds, social engineering attacks, malware and ransomware attacks, zero day and zero click attacks, Cybercriminals modus-operandi , Reporting of cyber crimes, Remedial and mitigation measures, Legal perspective of cyber crime, IT Act 2000 and its amendments, Cyber crime and offences, Organisations dealing with Cyber crime and Cyber security in India.	[12]
 Unit II Social Media Overview and Security: Introduction to Social networks. Types of Social media, Social media platforms, Social media monitoring, Hashtag, Viral content, Social media marketing, Social media privacy, Challenges, opportunities and pitfalls in online social network, Security issues related to social media, Flagging and reporting of inappropriate content, Laws regarding posting of inappropriate content, Best practices for the use of Social media. Digital Devices Security, Tools and Technologies for Cyber Security: End Point device and Mobile phone security, Password policy, Security patch management, Data backup, Downloading and management of third party software, Device security policy, Cyber Security best practices, Significance of host firewall and Anti-virus, Management of host firewall and Anti-virus, Wi-Fi security, Configuration of basic security policy and permissions. 	[10]
Unit III Introduction to Digital Forensics: Computer forensics fundamentals, Benefits of forensics, computer crimes, computer forensics evidence and courts, legal concerns and private issues. Investigations: Understanding Computing Investigations – Procedure for corporate High- Tech investigations, understanding data recovery work station and software, conducting and investigations.	[10]
 Unit IV Case Analysis: Processing crimes and incident scenes, securing a computer incident or crime, seizing digital evidence at scene, storing digital evidence, obtaining digital hash, reviewing case. Digital Forensics Tools: Current computer forensics tools- software, hardware tools, validating and testing forensic software, addressing data-hiding techniques, performing 	[8]

remote acquisitions, E-Mail investigations- investigating email crime and violations, understanding E-Mail servers, specialized E-Mail forensics tool.

Text Books:

- [T1] Cyber Crime Impact in the New Millennium, by R. C Mishra, Auther Press. Edition 2010.
- [T2] Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives by Sumit Belapure and Nina Godbole, Wiley India Pvt. Ltd. (First Edition, 2011)
- [T3] Warren G. Kruse II and Jay G. Heiser, "Computer Forensics: Incident Response Essentials", Addison Wesley, 2002.

Reference Books:

- [R1] Network Security Bible, Eric Cole, Ronald Krutz, James W. Conley, 2nd Edition, Wiley India Pvt. Ltd.
- [R2] Nelson, B, Phillips, A, Enfinger, F, Stuart, C., "Guide to Computer Forensics and Investigations, 2nd ed., Thomson Course Technology, 2006, ISBN: 0-619-21706-5.

Paper Cod	le: AR	I 314T									L	T/P	Credits
Subject: D	eep Lo	earning	g and R	einforce	ment Le	earning					4	0	4
Marking S Teachers C End Term	Continu	ous Eva		-		•					÷.		
INSTRUC	TION	S TO P	PAPER	SETTE	RS: Ma	ximum I	Marks: A	As per U	niversit	y Nor	ms		
 There sho Question Question Apart fro questions. H The quest questions to 	No. 1 sl ons. It sl m Ques Iowever ions are	hould be nould be stion No r, studen e to be	e compul of 15 m . 1, rest o t may be framed	sory and carks. of the pape asked to keeping i	cover the per shall o attempt n view t	entire syl consist of only 1 qu he learning	four unit estion from	iis questio s as per th om each u	ne syllabı nit. Each	ıs. Eve questi	ery unit on shou	should	have two 5 marks.
Course Ou	itcome	s [Blo	om's K	nowledg	e Level	(KL)]:							
CO1:	Abilit	y of stu	idents to	o underst	and the	basics co	oncepts o	f Deep f	eed forw	ard ne	etworks	5 [K1,]	K2]
CO2:	Abilit [K3,F	•	idents to	o apply a	nd analy	ze vario	us deep l	earning	applicati	ons w	ith case	e studie	es
CO3:	Abilit	y of stu	idents to	o underst	and the	basics co	oncepts o	f reinfor	cement l	earnir	ng and I	MDP []	K1, K2]
CO4:						p and mu nd case s				earning	g and a	malyze	various
Course Ou	itcome	es (CO)	to Prog	gramme	Outcom	nes (PO))						
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	РО	11	PO12
CO1	3	2	1	1	3	-	-	-	2	2	1		2
CO2	3	3	3	3	3	-	-	-	3	3	4		2
CO3	3	2	1	1	3	-	-	-	2	2	1		3
CO4	3	3	3	3	3	-	-	-	3	3	3		3
Average	3	2.5	2	2	3	-	-	-	2.5	2.5	2		2.5
Contents													Number of Lectures

Approved by BoS of USAR: 15/06/2023, Approved by AC sub-committee: 4/07//23

Applicable from Batch admitted in Academic Session 2022-23 Onwards Page | 60

٦.

Unit I Deep Feedforward Networks: Artificial Neural Networks, Artificial Neuron, Example: Learning XOR, Gradient-Based Learning, Hidden Units, Architecture Design, Back-Propagation and Other Differentiation Algorithms, Regularization for Deep Learning- Parameter Norm Penalties, Dataset Augmentation, Noise Robustness, Early Stopping, Dropout, Adversarial Training, Optimization for Training Deep Models- How Learning Differs from Pure Optimization? Challenges in Neural Network Optimization, Basic Algorithms- Stochastic Gradient Descent, momentum. Parameter Initialization Strategies, Algorithms with Adaptive Learning Rates, Optimization Strategies and Meta-Algorithms.	[8]
Unit II Convolutional Networks: The Convolution Operation, Motivation, Pooling, Data Types, building block of CNN, Transfer Learning, Autoencoders- Under Complete, regularized, sparse Denoising, Generative Modeling with DL, Generative Adversarial Network Revisiting Gradient Descent, Momentum Optimizer, RMSProp, Adam Deep Learning Applications and Case Studies: Large Scale Deep Learning, Deep Learning in Computer Vision, Deep Learning in Speech Recognition, Deep Learning in Natural Language Processing, Deep Learning for Recommender Systems.	[12]
UNit III Introduction to Reinforcement Learning: Introduction to Reinforcement Learning, The Reinforcement Learning Problem, Markov Decision Process (MDP)-Markov Process, Markov Reward Process, Markov Decision Process and Bellman Equations, Partially Observable MDPs. Exploration and Exploitation (Bandits), Multi-arm Bandits, Contextual Bandits and MDP Extensions.	[10]
Unit IV Planning by Dynamic Programming (DP): Policy Evaluation, Value Iteration, Policy Iteration, DP Extensions and Convergence using Contraction Mapping Policy Gradient Methods: Finite-Difference, Monte-Carlo and Actor-Critic Methods Reinforcement Learning applications and case Studies: TD-Gammon, Samuel's Checkers Player, Watson's Daily-Double Wagering, Optimizing Memory Control, Human-Level Video game play, Mastering the game of Go, Personalized Web Services, Thermal Soaring.	[10]
Text Books: [T1] Ian Goodfelllow, Yoshua Benjio, Aaron Courville , (2016),Deep Learning, The MIT Press [T2] Richard S. Sutton and Andrew G. Barto; Reinforcement Learning: An Introduction; 2nd Edit Press, 2020.	ion, MIT
 Reference Books: [R1] Josh Patterson, Adam Gibson, (2017), Deep Learning: A Practitioner's Approach, O'Reill [R2] Duda, R. O. & Hart, P. E. (2006). Pattern Classification. John Wiley & Sons. [R3] Csaba Szepesvári; Algorithms of Reinforcement Learning; Synthesis Lectures on Intelligence and Machine Learning, vol. 4, no. 1, 2010. [R4] Dimitri P. Bertsekas; Reinforcement Learning and Optimal Control; 1st Edition, Athena S 	Artificial

[R4] Dimitri P. Bertsekas; Reinforcement Learning and Optimal Control; 1st Edition, Athena Scientific, 2019.

Paper o	code: A	RI 316	Т								L	T/P	Credits
Subject	t: Smar	t Mate	rials fo	r IoT De	vices						4	0	4
	ng Sch												
				-		•			ns from ti				
									from tim				
INSTI								-	per Univ	ersity No	orms		
A A A	Questic answer Apart fr	on No. 1 type que rom Que	should b estions. I	be compul It should b o. 1, the re	sory and be of 15 est of the	l cover tl marks. e paper s	ne entire hall cons	ist of four	aper This quest cunits as p ly 1 questi	er the syll	labus.]	Every u	nit should
AA	The que the que The req	stions to uiremer	are to be be aske at of (sci	d should entific) ca	be at the alculator	e level of s/ log-ta	the pres bles/ data	cribed tex	mes of cou atbooks. ay be spec				/ level of
	1			Knowle									
CO1		-					-		ucting ma				
CO2	Abilit	y of stu	dents to	underst	and the	basics c	concepts	of semi-	-conductin	ng materi	ials [K	K1, K2]	
CO3	Abilit	y of stu	dents to	underst	and the	basics c	concepts	of insula	ating mate	erials [K]	1, K2		
CO4	Abilit	y of stu	dents to	underst	and the	basics c	concepts	of magn	etic mate	rials [K1	, K2]		
	Cour	se Out	come to	o Progra	m Outo	comes, I	Mappin	g (Scale	1: Low, 2	2: Mediu	ım, 3:	High)	
CO/ PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	P	011	PO12
CO1	3	3	3	2	3	-	-	-	-	1		1	2
CO2	3	3	3	3	3	-	-	-	-	1		2	2
CO3	3	3	3	3	3	-	-	-	-	1		2	3
CO4	3	3	3	3	3	-	-	-	-	1		2	3
Cours	e Conte	ent									1		No of lectures
proper Mercu: conduc	icting N ties of ry, Nicl	copper, kel, Tita ariation	, alumi anium,	num, ste Carbon,	el tung Lead, t	gsten, N hermal,	/lolybde thermo	num, Pla couple, 1	ativity allo atinum, 7 materials, rs, topolog	Fantalum specific	, Nio resis	bium, tance,	[10]
	onducto								trical con energy le				[10]

Applicable from Batch admitted in Academic Session 2022-23 Onwards

semiconductors, Intrinsic conduction, impurity conduction, P and N type impurities, electrical change, Neutrality, Drift, Mobility current flow in semiconductors P-N junction formation by alloying, Forward and reverse of P-N junction, Reverse separation current, Zener effect, Junction, capacitance, hall defects and hall coefficient.	
Unit III Insulating Materials: General electrical mechanical and chemical properties of insulating material, Classification insulating materials on the basis of temperature rise. General properties of transformer oil, commonly used varnishes, solidifying insulating materials, resins, bituminous waxes, drying oils, Fibrous insulating materials, wood, paper and cardboard, varnished adhesive tapes, other insulating materials such as mica, ceramic, Bakelite, ebonite, glass, PVC, rubber, other plastic molded materials.	[10]
Unit IV Magnetic Materials: Details of magnetic materials, reduction between B.H., soft and hard magnetic materials. Di-magnetic, Para magnetic and Ferromagnetic materials, electrical sheet steel, cast iron. Permanent magnetic materials. Dynamic and static hysteresis loop. Hysteresis loss, eddy current loss, Magnetization, magnetic susceptibility, coercive force, core temperature, rectangular hysteresis loop, Magnet rest square loop core materials, iron silicon, iron alloys.	[10]
Text Books: [T1] Kortisky; Electrical Engineering Materials.	
[T2] Indulkar and S. Thruvengadem; S. Chand, Electrical Engineering Materials.	
Reference Books:	
[R1] Electrical Engineering Material s & Devices; John Allison; TMH.	

University School of Automation and Robotics GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY

East Delhi Campus, Surajmal Vihar Delhi - 110092

			2				Delhi	- 110	092				
Paper co	ode: AR	I 318T									L	T/P	Credits
Subject	: Introdu	iction to	Wirele	ss and C	Cellular	Commu	nicatio	n			4	0	4
Markin	g Schem	e:									1	1	
	s Continu			-	•								
End Ter	m Theory	v Examiı	nation: A	As per un	iversity	examina	tion not	rms fro	m time	to time	e.		
INSTRU	UCTION	S TO P	APER S	SETTER	RS: Max	imum N	Iarks: A	As per	Univer	rsity No	orms		
≻]	There sho	uld be 9	question	ns in the	end tern	n examin	ation q	uestion	paper				
	Question 1			-	-			-		questio	on shou	ıld have	;
	bjective											.11 . 1	F
	Apart from nit shoul				-					_	-		-
	nit. Each					students	may be	askeu	to atten	ipt om	y i que	<i>stion</i> 11	om each
	The quest	-				view the	learnin	g outco	omes of	course	/paper.	The sta	undard/
	evel of th	-						-					
≻]	The requir	rement o	of (scient	tific) cale	culators/	log-tabl	es/ data	-tables	may be	e specif	ied if r	equired	
Course	Outcome	es [Bloo	m's Kno	owledge	Level (l	KL)]:							
CO1	Ability of	of studer	nts to Un	derstand	the basic	s of mobi	le comm	nunicati	on syste	ms. [K]	l, K2]		
CO2	Ability of [K2,K3,		nts to De	sign the c	ellular sy	stem and	improv	e the co	overage a	and capa	acity of	the syste	em.
CO3	Ability of	of studer	nts to An	alyze and	l design t	he variou	s mobile	e propag	gation m	odels.	K2,K3	,K4]	
CO4	Ability of	of studer	nts to De	sign GSN	I and CD	MA wire	less netv	works. [K3, K4	l]			
Course	Outcome	e to Pro	gram O	utcomes	, Mappi	ng (Scal	e 1: Lo	w, 2: N	Mediun	n, 3: Hi	i gh)		
CO/PO		PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1		3	3	3	2	2	-	-	-	-	1	1	2
CO2		3	3	2	3	3	-	-	-	1	1	2	2
CO3		3	3	2	3	3	-	-	-	1	1	2	3
CO4		3	3	2	3	3	-	-	-	1	1	2	3
Course	Content							•					No of lectures
Introduc system,	on of Win tion-base Cordless	station, telepho	mobile one syste	station, 1 em, Cell	MSC, fo	rward ar ephone	system,	Adva	ntages a	and dis	advant	ages of	
Unit II Cellular	• Concep tion, freq	t – Syste	em Desi	gn Fund	lamenta	ls:							[10]
													-

Approved by BoS of USAR: 15/06/2023, Approved by AC sub-committee: 4/07//23 Applicable from Batch admitted in Academic Session 2022-23 Onwards

interference and system capacity, cochannel and adjacent channel interference, cell splitting, sectoring, microcell zone concept.	
Unit III GSM & CDMA Systems: GSM network architecture, GSM signaling protocol architecture, Identifier used in GSM systems, GSM speech coding, authentication and security in GSM, GSM call procedures, GSM handoff procedures, GSM services and features, Concept of spread spectrum, CDMA architecture.	[10]
Unit IV Emerging Wireless Network Technologies: IEEE 802.11 WLAN technology, IEEE 802.15 WPAN technology, IEEE 802.16 WMAN technology, Mobile adhoc networks (MANETs), Wireless sensor networks, RFID technology, IEEE 802.21 standards overview, Case studies of latest wireless technologies.	[10]
 Text Books: [T1] Theodore.S. Rapport (2010) Wireless Communications, Pearson Education, 2nd Edition. [T2] Upen Dalal (2010) Wireless communication, Oxford University press. [T3] Kav T. S. Rappaport (2010) Wireless Communications: Principles and practice, Pearson, 2 Edition. [T4] Andrea Goldsmith (2005) Wireless Communications, Cambridge University Press. 	2nd
 Reference Books: [R1] T. L. Singal (2011) Wireless Communications, Tata McGraw Hill, 2nd Edition. [R2] T. S. Rappaport (2010) Wireless Communications: Principles and practice, Pearson, 2nd Edition. [R3] A. Goldsmith (2005) Wireless Communications, Cambridge university press, 1st Edition. 	

Page | 65

Delhi - 110092

Paper o	code : A	RI 320T	I							L	T/P	Credits
Subject	t: PCB	Designi	ng and I	Fabricat	tion					4	0	4
Teacher		nuous Ev		-		•		orms fro rms fron				
INSTR	UCTIO	NS TO I	PAPER	SETTE	RS: Max	ximum l	Marks:	As per U	J niversit	y Norm	S	
Course Course CO1: F K2] CO2: U density CO3: A image t CO4: A	Question short ans Apart fro have two should be The quest The quest The requi- contcon Familiariz Jnderstan and pow Applying Applying	wer type of m Questions e 15 mark tions are to ions to be irement o nes [Bloo zation an ending, an yer saving g the prei- nd solde g and ana	ould be co questions on No. 1, s. Howev s. to be fran e asked sh f (scientif om's Kn d unders d applyi g. [K1,K requisite ring tech ilyzing th	ompulsor . It shoul the rest of er, studen ned keepi ould be a fic) calcu owledge standing ng the k 2,K3] knowleo iniques.	y and cov d be of 15 of the pap nts may b ing in vie at the leve lators/ log e Level (of variou nowledg dge to pe [K1,K2,I nt trends	ver the en 5 marks. ber shall c e asked to w the leased of the p g-tables/o KL)]: us device e of the erform de K3] and scop	tire sylla consist of o attempt rning out orescribed data-table es/comp PCB lay esign and pe of the	bus. This four unit only 1 q comes of l textbook es may be	s as per th uestion fr course/pa cs. e specified nat may b niques fo g of PCB dustry. []	ne syllabu om each u aper. The d if requir be mount or optimiz s with the <3,K4]	ed on PC	unit should question level of CB. [K1,
CO/PO		PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10		PO12
											PO11	
CO1	2	3	3	3	1	0	0	0	0	1	0	3
CO2	2	3	3	3	1	0	0	0	0	1	0	3
CO3	2	3	3	3	2	0	0	0	0	1	0	3
CO4 Course	2 Conten	3 t	3	3	2	0	0	0	0	1	0	3 No of Lectures
Semico single, Double Challen	nductor double, -sided Pr ges in N	Packagin multilay rinted Cir	ng Techn er, rigid rcuit Boa PCB Dea	nology, and fle ards, Mu sign and	Surface exible bo lti-layer l Manufa	Mount oards, M Boards, acturing,	Devices anufactu Rigid an standar	sification (SMD). uring of nd Flexib rds on P	Classifi PCB: Sille Printe	cation o ingle sid d Circuit	f PCB - leboards, t Boards,	[9]

_____ Approved by BoS of USAR: 15/06/2023, Approved by AC sub-committee: 4/07//23 Applicable from Batch admitted in Academic Session 2022-23 Onwards

Delhi - 110092

	r
Unit II Schematic & Layout Design: Schematic diagram, General, Mechanical, and Electrical design considerations, Placing and Mounting of components, Conductor spacing, routing guidelines, heat sinks and package density, Netlist, creating components for a library, Tracks, Pads, Vias, power plane, grounding, Layout Design.	[9]
Unit III PCB PCB Design Process: Design automation, Design Rule Checking; Exporting Drill and Gerber Files; Drills; Footprints and Libraries Adding and Editing Pins, copper-clad laminates materials of copper-clad laminates, properties of laminates (electrical & physical), types of laminates, soldering techniques. Film master preparation, Image transfer, photo printing, Screen Printing, Plating techniques, Etching techniques, Mechanical Machining operations, Lead cutting and Soldering Techniques, Testing, and quality controls.	[12]
Unit IV PCB Technology: Introduction of PCB prototyping machines, Schematic Entry, PCB Parts creation, Auto Routing, Post Design, Brief overview of various models available, Recent Trends, and environmental concerns in the PCB industry.	[10]
 Text Books: [T1] Walter C. Bosshart, (2008) Printed Circuit Board – Design & Technology, Tata McGrav [T2] R.S. Khandpur (2005) Printed Circuit Board –Design, Fabrication, Assembly & Testing Mcgraw-Hill Education Pvt. Ltd., First Edition. 	
Reference Books: [R1] Chris Schroeder, (1998) Printed Circuit Board Design Using Autocad, Newnes Publishe [R2] Clyde F. Coombs, Jr, Happy T. Holden (2016) Printed Circuits Handbook, McGraw-Hi	

Education, Sixth Edition.

Paper o	code : Al	RI 322T								L	T/P	Credits
Subject	t : Data t	oase Ma	nageme	nt Syste	m					4	0	4
Teacher End Ter INSTR	rm Theorem UCTIO There sho Question short ans Apart fro	nuous Ev ry Exam NS TO Duld be 9 No. 1 sho wer type m Questi	ination: PAPER questions ould be co questions on No. 1,	As per u SETTE s in the en ompulson the rest of	-	ximum 1 ximum 1 xaminatio yer the en	ation no Marks: on question tire sylla	rms fron As per U on paper bus. This	n time to U niversi t question as as per tl	time. t y Norm should ha he syllabu	ave object 1s. Every 1	ive or unit should
A	The quest the questi	tions are	to be fran e asked sh	ned keep ould be a	•	w the lea el of the p	rning out	comes of l textbool	course/pa	aper. The	standard/	level of
CO1: A CO2: A CO3: A CO4: A	Ability of Ability of Ability of latabases	f students f students f students f students f [K4]	s to the c s to unde s to com	lesign da erstand t pare diff	he basic of atabase so he concept ferent type es, Mapp	chemas a pt of trai bes of No	and ER 1 nsaction SQL Da	Model [H manager atabases	K6] ment [K1 and RDI	I,K2] 3MS wit	h differei	nt NoSQL
CO/PO		PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	3	3	1	-	-	-	-	2	3	3
CO2	2	3	3	3	1	1	-	-	-	2	3	3
CO3	2	3	3	3	1	1	-	-	-	2	3	3
CO4	3	3	3	3	1	1	-	-	-	2	2	3
Course	Conten	t										No of Lectures
		•	· .		abase sys Managen		ew of da	ta, Relat	ional dat	abases, l	Database	[10]
relation BCNF)	al schen Relation	nas, Intro nal Alge	oduction bra: Int	to Unif roductio	ied Mod n, select	leling La ion and	anguage,	, Normal	lization ((1NF, 21	dd rules, NF, 3NF, division,	[10]
Oroupn	ig and O	ngroupn	ng, Relai	tional Co	ompariso	n.					,	

Approved by BoS of USAR: 15/06/2023, Approved by AC sub-committee: 4/07//23 Applicable from Batch admitted in Academic Session 2022-23 Onwards

concurrency control(2PL,Deadlock) Time Stamping Methods, Database Recovery Management	
Unit IV Overview and History of NoSQL Databases, Definition of the Four Types of NoSQL Database, The Value of Relational Databases, Getting at Persistent Data, Concurrency, Integration, The Emergence of NoSQL. Comparison of relational databases to new NoSQL stores, MongoDB, Cassandra, HBASE, Neo4j use and deployment, Application, RDBMS approach, Challenges NoSQL approach, Key-Value and Document Data Models, Column-Family Stores, Aggregate-Oriented Databases. Replication and sharding, MapReduce on databases.	
 Text Books: [T1] Sadalage, P. J., & Fowler, M. (2013). NoSQL distilled: a brief guide to the emerging world polyglot persistence. Pearson Education. [T2] Silberschatz, A., Korth, H. F., & Sudarshan, S. (2002). Database system concepts (Vol. 5). N York: McGraw-Hill. [T3] Elmasri, R., Navathe, S. B., Elmasri, R., & Navathe, S. B. (2000). Fundamentals of Databas Systems 	New
Reference Books: [R1] Date, C. J. (2004). An Introduction to Database Systems. 8-th ed. [R2] Ullman, J. D. (1983). Principles of database systems. Galgotia publications.	

[R3] Bipin C. Desai. (1990). An Introduction to Database Systems. West Publishing Co.

DETAILED SYLLABUS FOR 7th SEMESTER

Approved by BoS of USAR: 15/06/2023,Approved by AC sub-committee: 4/07//23Applicable from Batch admitted in Academic Session 2022-23 OnwardsPage | 70

Delhi - 110092

Paper	code: A									L	T/P	Credits
Subjec	t: Cloud	l, Dew, l	Edge and	d Fog[C	DEF] C	omputir	ıg			4	0	4
Teache		nuous Ev	valuation	*		•						
INST	RUCTI	ONS TO	PAPE	R SETTI	ERS: M	aximum	Marks:	As per	Univers	ity Norn	ns	
≫	There sl	nould be	9 questi	ons in th	e end ter	m exam	ination q	uestion p	paper			
≽	Questio	n No. 1	should	be comp	oulsory a	and cove	er the er	ntire syll	abus. Tł	nis quest	ion sho	ould have
object	ive or sh	ort answ	ver type o	questions	s. It shou	ld be of	15 mark	s.				
≫	-	-								•	•	us. Every
		-	uestions. e 15 mai		er, stude	nts may	be asked	to attem	pt only 1	questio	n from (each unit.
>					eping in	view th	e learnin	g outcon	nes of co	urse/pap	er. The	standard/
level o	-		o be aske		1 0			0				
>	The req	uirement	t of (scie	ntific) ca	lculators	s/ log-tał	oles/ data	a-tables r	nay be s	pecified	if requi	red
Course	e Outcor	nes [Blo	om's Ki	nowledg	e Level	(KL)]:						
CO1	To Un	derstan	d the ba	sic conc	epts of C	Cloud Co	mputing	. [K2]				
CO2	To Un	derstan	d and re	membe	r the Ser	vice Mo	dels such	n as SAA	S, PAA	S and IA	AS. [K	1, K2]
CO3	To An	alyze the	e differe	nt Threat	ts, Vulne	erabilitie	s and Att	tacks in (Cloud co	mputing	Domai	n. [K4]
CO4	То Ар	ply the I	MiCEF C	Concepts	to Crea	te Cloud	l Compu	ting Prob	olems an	d solve t	hem.[K	3, K6]
Cours	se Outco	ome to P	rogram	Outcom	es, Map	ping (Se	cale 1: L	ow, 2: N	ledium,	3: High)	
CO/ PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	3	3	2	3	3	3	3	2	2	3
CO2	3	3	3	3	2	3	3	3	1	3	3	3
CO3	3	3	3	3	2	1	3	3	3	2	1	3
CO4	3	3	3	3	2	2	1	1	1	3	2	3
Cours	se Conte	ent	I			1	1	1		I		No of lectures

Approved by BoS of USAR: 15/06/2023, Approved by AC sub-committee: 4/07//23

1

Unit I

Introduction to Cloud Computing, Definition, Characteristics, Components, Cloud Service provider, Software As a Service(SAAS), Platform As a Service(PAAS), Infrastructure as a Service(IAAS) and Others, Load balancing and Resource optimization. Comparison among Cloud computing platforms: Amazon EC2, Platform as Service: Google App Engine, Microsoft Azure, Meghraj etc.	[10]
Unit II Introduction to Cloud Technologies, Study of Hypervisors, SOAP, REST, Comparison of SOAP and REST, Webservices, mashups-Web services, Mashups: user interface services, Virtual machine technology, virtualization applications in enterprises, Pitfalls of virtualization, Multi-entity support, Multi-schema approach, Multi-tenancy using cloud data stores.	[10]
Unit III Cloud security fundamentals, Vulnerability assessment tool for cloud, Privacy and Security in cloud, Cloud computing security architecture, Issues in cloud computing, Issues in Intercloud environments, QoS Issues in Cloud, Streaming in Cloud. Quality of Service (QoS) monitoring in a Cloud computing environment, Inter Cloud issues.	[10]
Unit IV MICEF Computing(Mist, IOT, Cloud, Edge and FOG Computing), Dew Computing : Concept and Application; Case Study: Design and Development of MiCEF Computing Programs using Free and Open Source Software such as : CloudSim and iFogSim	[10]
 Text Books: [T1] Cloud Computing Bible : Barrie Sosinsky, Wiley India, 2011 [T2] Cloud Computing : Principles and Paradigms Paperback, Rajkumar Buyya, James Broberg, Goscinski, John Wiley & Sons, 2011 [T3] Cloud Computing Black Book : Kailash Jayaswal, Jagannath Kallakurchi, Donald J. Houd Shah, Dreamtech Press, 2014 Reference Books: 	-

[R1] Cloud Computing : A Practical Approach, Toby Velte, Anthony Velte, Robert Elsenpeter McGrawHill, 2017

[R2] Cloud Computing : A Complete Guide, Gerardus Blokdyk, 5 Starcooks, 2019.

Delhi - 110092

						-	eini -		_			
Paper C	ode: AR	RI 403								L	T/P	Credits
Subject:	Wireles	ss Senso	r Networ	·ks						4	0	4
Marking	g Schem	e:								•	•	
				-	•				time to the			
End Terr	n Theory	y Examir	nation: As	s per uni	versity e	xaminatio	on norm	s from t	ime to tim	e.		
INSTRU	JCTION	IS TO P.	APER SI	ETTER	S: Maxir	num Ma	rks: As	per Un	iversity N	orms		
≻ T	here sho	ould be 9	question	s in the o	end term	examinat	ion ques	stion pa	per			
				-	-		-	llabus. T	This questi	on should	l have o	objective
			pe questi									
	-				_	-			units as pe	-		-
		-	-		er, studen	its may be	e asked 1	to attem	pt only 1	question f	rom ea	ch unit.
	-		uld be 15		oing in vi	ew the le	arning c	utcome	s of cours	e/naner T	'he stan	dard/
	-				Ũ		U		bed textbo		ne stan	luaru/
		-						-	y be speci		uired	
			m's Knov			-			J			
		-		U			f wirele	ess senso	or network	s and its	annlica	tion to
CO1	-		scenarios			mentais c		.55 501150		is and its o	appirea	
	Ability	of studen	ts to iden	tify and	formulat	e various	protoco	ols at va	rious laye	rs and its	differer	nces
CO2	with trac	ditional p	protocols.	[K1,K2	2,K3]		-		-			
CO3	-		its to anal or netwoi	-	-	rtaining t	o sensor	networ	ks and the	challeng	es invo	lved in
CO3		-				a protoco	la in W	ONI FIZZ		1		
									8, K4, K5]			
	1	-	-	T			1	1	lium, 3: H		DO11	DO1
CO/PO		PO02	PO03		PO05	PO06	PO07	PO08	PO09	PO10	POII	
CO1	3	3	3	2	2	-	-	-	-	1	1	2
CO2	3	3	2	3	3	-	-	-	1	1	2	2
CO3	3	3	2	3	3	-	-	-	1	1	2	3
CO4	3	3	2	3	3	-	-	-	1	1	2	3
Course	Content											No of
												lectures
Unit I		WCNI.										
Introdue Fundame			commun	ication t	echnoloo	y, the ele	ctromag	netic sr	bectrum ra	dio propa	gation	[10]
					-	•	-		echniques		-	
			s, Wireles				-		•		,	

Delhi - 110092

Unit II Adhoc/Sensor Networks: Introduction to adhoc/sensor networks: Key definitions of adhoc/sensor networks, unique constraints and challenges, advantages of ad-hoc/sensor network, driving applications, issues in adhoc wireless networks, issues in design of sensor network, sensor network architecture, data dissemination and gathering.	[10]
Unit III MAC Protocols: Issues in designing MAC protocols for adhoc wireless networks, design goals, classification of MAC protocols, MAC protocols for sensor network, location discovery, quality, other issues, S-MAC, IEEE 802.15.4.	[10]
Unit IV Routing Protocols and QoS: Issues in designing a routing protocol, classification of routing protocols, table-driven, on-demand, hybrid, flooding, hierarchical, and power aware routing protocols, Issues and Challenges in providing QoS, QoS frameworks, need for energy management, and system power management schemes, Case study of Real time application.	[10]
 Text Books: [T1] C. Siva Ram Murthy, and B. S. Manoj, "AdHoc Wireless networks ", Pearson Education - 200 [T2] Feng Zhao and Leonides Guibas, "Wireless sensor networks ", Elsevier publication - 2004. Reference Books: 	08.
[R1] Jochen Schiller, "Mobile Communications", Pearson Education, 2nd Edition, 2003.[R2] William Stallings, "Wireless Communications and Networks ", Pearson Education - 2004	

Programme Core Electives for 7th Sem (PCE-4, PCE-5)

Paper o	code: AF	RI 415								L	T/P	Credits
Subject	t: Radar	and Na	avigatio	on						4	0	4
Teacher End Ter	rm Theor	uous E [.] ry Exan	nination	: As per	universit	ity exami y examin	ation nor	ms from	n time to	o time.	-	
INSTR	UCTIO	NS TO	PAPEI	K SETT	EKS: Ma	aximum I	Marks: A	As per U	Universi	ty Norn	15	
A A A A	Question objective Apart fro unit shou unit. Eac The ques level of t The requ Outcon Ability to under Ability	n No. 1 s om Que uld have th quest stions an the quest irement nes Bloo of stude rstand the of stude tters and	should b rt answe stion No e two qu ion shou re to be stions to t of (sci om's K ents to a racking ents to ru l receiv	be compu- er type que to 1, the mestions. uld be 15 framed k be asked entific) c nowledg pply dop radars. [1 efresh pr ers. [K1,	ulsory and uestions. rest of the However marks. ceeping in d should alculator e Level (pler prin K1, K2] inciples o K2,K3]	n view the be at the s/ log-tab KL) : ciple to ra	he entire be of 15 hall consist s may be e learning level of t les/ data adars and as and pr	syllabus marks. ist of for asked to g outcor he preso -tables r l hence	s. This q ur units to attemp mes of c cribed te may be s detect m on as rel	as per the t only 1 ourse/pa xtbooks. pecified oving ta ated to r	e syllabu question per. The if require rgets, clu adars, als	s. Every from each standard/
CO3	related t	to navig	ation.	K1,K2,K	[3]							
CO4						alyze nav						K4]
					1	ping (Sca	1	· ·	· ·	1	-	
	PO01					PO06	PO07	PO08	PO09	PO10		PO12
CO1	3	3	3	2	2	-	-	-	-	1	1	2
CO2	3	3	2	3	3	-	-	-	1	1	2	2
CO3	3	3	2	3	3	-	-	-	1	1	2	3
CO4	3	3	2	3	3	-	-	-	1	1	2	3
Course	Conten	t										No of lectures
						nbiguous requencie	0	-			-	

Performance, Minimum Detectable Signal, Receiver Noise, Modified Radar Range Equation, Illustrative Problems. Radar Equation: SNR, Envelope Detector, False Alarm Time and Probability, Integration of Radar Pulses, Radar Cross Section of Targets (simple targets – sphere, cone-sphere), Transmitter Power, h PRF and Range Ambiguities, System Losses (qualitative treatment), Illustrative Problems.	
Unit II CW and Frequency Modulated Radar: Doppler Effect, CW Radar – Block Diagram, Isolation between Transmitter and Receiver, Non-zero IF Receiver, Receiver Bandwidth Requirements, Applications of CW radar, Illustrative Problems.FM-CW Radar, Range and Doppler Measurement, Block Diagram and Characteristics (Approaching/ Receding Targets), FM-CW altimeter, Multiple Frequency CW Radar.	[10]
Unit III MTI and Pulse Doppler Radar: Introduction, Principle, MTI Radar with – Power Amplifier Transmitter and Power Oscillator Transmitter, Delay Line Cancellers – Filter Characteristics, Blind Speeds, Double Cancellation, And Staggered PRFs. Range Gated Doppler Filters, MTI Radar Parameters, Limitations to MTI Performance, MTI versus Pulse Doppler radar. Tracking Radar: Tracking with Radar, Sequential Lobing, Conical Scan, Monopulse Tracking Radar –Amplitude Comparison Monopulse (one- and two- coordinates), Phase Comparison Monopulse, Tracking in Range, Acquisition and Scanning Patterns, Comparison of Trackers.	[10]
Unit IV Detection Of Radar Signals In Noise: Introduction, Matched Filter Receiver – Response Characteristics and Derivation, Correlation Function and Cross-correlation Receiver, Efficiency of Non-matched Filters, Matched Filter with Non-white Noise. Radar Receivers: Noise Figure and Noise Temperature, Displays – types. Duplexers – Branch type and Balanced type, Circulators as Duplexers. Introduction to Phased Array Antennas – Basic Concepts, Radiation Pattern, Beam Steering and Beam Width changes, Series versus Parallel Feeds, Applications, Advantages and Limitations.	[10]
Text Books: [T1] Introduction to Radar Systems – Merrill I. Skolnik, TMH Special Indian Edition, 2nd Edition	on, 2007.
Reference Books:	

[R1] Introduction to Radar Systems – Merrill I. Skolnik, 3rd Edition, Tata McGraw-Hill, 2001.

- [R2] Radar Principals, Technology, Applications Byron Edde, Pearson Education, 2004.
- [R3] Radar Principles Peebles, Jr., P.Z.Wiley, NewYork, 1998.

Paper c	ode: ARI	417								L	T/P	Credits
Subject	: Microwa	we Engi	neering							4	0	4
Marki	ng Scheme	2:										
Teacher	rs Continu	ous Evalu	uation: A	s per uni	versity e	xaminat	tion nor	ms from t	ime to	time.		
End Te	rm Theory	Examina	ation: As	per univ	ersity ex	aminati	on norm	ns from tir	ne to t	ime.		
INSTR	UCTION	S TO PA	PER SE	TTERS	: Maxim	um Ma	rks: As	s per Univ	versity	Norm	S	
	There shou	-					^	· ·				
	Question N						e syllabu	s. This que	stion s	hould h	ave obje	ective or
	short answe											
	Apart from								-	•		-
	should have	-			idents ma	iy be ask	ted to att	empt only	I quest	tion from	n each i	lnit.
	Each questi The questic				in view th	e learnii	ng outco	mes of cou	irce/nar	or The	standar	d/level
	of the quest						-				standa	
	The require					•				if requi	red	
	Outcome				-			,				
CO1							s of mic	crowave so	olid sta	te devi	ces. [K	[1, K2]
	Ability o	f students	s to unde	rstand an	d analys	e the co	ncept of	f wavegui	des an	d reson	ant	
CO2	frequence				5		1	U				
CO3			s to unde	rstand the	e perforn	nance ai	nalysis (of microw	ave tu	bes and	l comp	onents.
05	[K1,K2,]		. 1	1	1 .		6		1.1.			
CO4	Ability o [K1,K3,]		s to apply	and ana	iyze vari	ous typ	es of an	tennas and	a their	parame	eters.	
Course	Outcome	to Progr	am Outo	comes, M	lapping	(Scale 1	l: Low,	2: Mediu	ım, 3:	High)		
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	3	2	3	-	-	-	-	1	1	2
CO2	3	3	3	3	3	-	-	-	1	1	2	2
CO3	3	3	3	3	3	-	-	-	1	1	2	3
CO4	3	3	3	3	3	-	-	-	1	1	2	3
Average	3	3	3	2	3	-	-	-	1	1	1	2.5
Course	Content											No of
Course	Content											lectures
Unit I												
Waveg												
	gular & c		0									[10]
	m, rectang											
		, i owei,	menual		ulai wa	eguiue	ا ,نا ،	in moues	5. wav		nues,	

Applicable from Batch admitted in Academic Session 2022-23 Onwards Page | 77

Microstrip transmission line (TL), Coupled TL, Strip TL, Coupled strip line, Coplanar TL, Microwave cavities.	
Unit II Microwave Components Passive microwave devices: Scattering matrix, Passive microwave devices: Microwave hybrid circuits, Terminations, Attenuators, Phase Shifters, Directional couplers: Two-hole directional couplers, S- Matrix of a directional coupler, Hybrid couplers, Microwave propagation in ferrites, Faraday rotation, Isolators, Circulators. S-parameter analysis of all components.	[10]
Unit III Microwave Tubes And Solid-State Devices Limitation of conventional tubes; Construction, operation and properties of Klystron amplifier, reflex Klystron, magnetron, TWT, BWO, crossed field amplifiers, Varactor Diode, GUNN diode, IMPATT, TRAPATT.	[10]
Unit IV Antenna Introduction Microwave frequency bands, Physical concept of radiation, Near- and far-field regions, Fields and Power Radiated by an Antenna, Antenna Pattern Characteristics, Antenna Gain and Efficiency, Aperture Efficiency and Effective Area, Impedance matching, Friis transmission equation, Radiation Mechanisms of Linear Wire and Loop antennas, Aperture antennas, Reflector antennas, Microstrip antennas.	[10]
 Text Books: [T1] <i>Microwave devices and circuits</i>: Samuel Liao; PHI [T2] A Das and S.K. Das, <i>Microwave Engineering</i>; McGraw Hill Education [T3] <i>Antennas and Wave Propagation</i>- John D. Krauss, Ronald J Marhefka, Ahmad SKhan, 4 Edition, McGraw Hill Education, 2013 	th
Reference Books: [R1] <i>Microwave Engineering-</i> David M Pozar, John Wiley India Pvt Ltd., 3rd Edn, 2008. [R2] <i>Microwave Engineering-</i> Sushrut Das, Oxford Higher Education, 2nd Edn,2015 [R3] <i>Antennas and Wave Propagation-</i> Harish and Sachidananda: Oxford University Press, 200	07

Paper co	de: AR	I 419								L	T/P	Credits
Subject:	Digital	Signal	and Im	age Pr	ocessin	g				4	0	4
	Contin	uous Ev		-		•				me to time ne to time.		
INSTRU	CTIO	NS TO	PAPE	R SETT	TERS: 1	Maximu	m Mark	s: As po	er Univ	ersity No	rms	
➤ There	should	be 9 que	estions i	n the end	d term e	xaminatio	on question	n paper				
answer ty ➤ Apart have two be 15 mar	pe quest from Q question ks.	ions. It s uestion l s. Howe	should b No. 1, th ever, stuc	e of 15 n le rest of lents ma	marks. f the pap ly be ask	er shall c ted to atte	onsist of f mpt only	four unit 1 questic	s as per on from e	the syllabu each unit. E	s. Every ı Each quest	ve or short unit should ion should
questions	to be as	ked shou	uld be at	the leve	el of the	prescribed	d textbool	KS.	-	aper. The s d if require		evel of the
	-					-		indy be	speeme		d	
Course (-			-			<u> </u>	1		FT74 T	7.61
CO1		·					-	-	-	l processir	<u> </u>	
CO2	Ability	y of stu	dents to	unders	tand an	d apply d	ligital sig	gnals to	IIR and	FIR filter	rs [K1, K	2, K3].
CO3	-	y of stud ages [K			tand and	d apply in	mage pro	ocessing	and im	age enhan	cement to	echniques
CO4		y of stud images			and ana	lyze vario	ous imag	e proces	ssing an	d compres	ssion tech	niques to
Course C												
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10 1	PO11 1	PO12
CO1 CO2	3	3	3	2 3	3	-	-		-	1	2	2 2
CO2	3	3	3	3	3	-	-	-	1	1	2	3
CO4	3	3	3	3	3	-	1	1	2	3	3	3
Course (Content	t										No of lectures
	als –Sa	ampling	theore	m - Di	iscrete	time sign	nals. Dis	crete tii	ne syste	s time and ems –Ana		[8]

I

Unit II

Introduction to DFT: Efficient computation of DFT Properties of DFT – FFT algorithms – Radix- 2 and Radix-4 FFT algorithms – Decimation in Time – Decimation in Frequency algorithms – Use of FFT algorithms in Linear Filtering and correlation. IIR and FIR Filters: System Design of Discrete time IIR filter from continuous time filter – IIR filter design by Impulse Invariance. Linear phase filter – Windowing techniques – rectangular, triangular, Blackman and Kaiser windows – Frequency sampling techniques – Structure for FIR systems.	[12]
Unit III Introduction to Image Processing: Fundamentals, Applications, Image processing system components, Image sensing and acquisition, Sampling and quantization, Neighbors of pixel adjacency connectivity, regions and boundaries, Distance measures. Image Enhancement and Restoration: Frequency and Spatial Domain, Contrast Stretching, Histogram Equalization, Low pass and High pass filtering, Noise models, mean, order—statistics, adaptive filters, Band reject, Band pass and notch filters.	[12]
Unit IV Colour image processing and Image compression: Colour models, Pseudo colour Image processing, Colour transformation and segmentation, Fundamentals of image compression, image compression models, Error free and lossy compression, Standards.	[8]
 Text Books: [T1] Oppenheim A V and Sehafer R W (1989), Discrete Time Signal Processing, Prentice H [T2] Proakis J G and Manolakis D G (2007), Digital Signal Processing, Pearson Education I [T3] Rafel C. Gonzalez and Richard E. Woods (2017), Digital Image Processing, Pearson I India, 2nd Edition. 	ndia.
Reference Books: [R1] Oppenheim A V, Willsky A S and Young I T (1983), Signal & Systems, Prentice Hall. [R2] Anil K Jain (2015), Fundamentals of Digital Image Processing, Prentice Hall, Third Ed	ition.

Paper c	ode: AR	I 421								L	T/P	Credits
Subject	: IoT Se	curity								4	0	4
Teacher		uous Eva	luation: 2 nation: 75									
INSTR	UCTION	NS TO P	APER S	ETTERS	S: Maxir	num Ma	arks: 75					
> 7	There sho	ould be 9	question	s in the e	nd term	examina	tion que	stion pap	er			
> (Question	No. 1 sh	ould be c	ompulso	ry and co	over the o	entire sy	llabus. T	his que	estion sh	ould ha	ve
objectiv	e or shor	t answer	type que	stions. It	should b	be of 15 r	narks.					
	-	-			-	-		of four u		-	•	•
			stions. Ho 15 marks.		tudents	may be a	sked to	attempt o	nly 1 d	question	from ea	ach unit.
-					oing in vi	iew the le	earning	outcomes	of co	urse/pap	er. The	standard/
	-			-	0		U	ibed textb		1 1		
\gg	The requi	irement c	of (scienti	fic) calcu	ulators/ l	og-tables	s/ data-ta	ables may	v be sp	ecified i	f requir	ed
Course	Outcom	es- Bloo	m's Kno	wledge I	Level (K	L):						
CO1	Ability K2]	of studer	its to und	erstand t	he theory	y and pra	ctice rel	ated to Se	ecurity	in IOT	System	. [K1,
CO2	Ability	of studer	nts to ider	ntify and	formulat	te Crypto	graphic	Fundame	entals t	for IoT.	[K1,K2	,K3]
CO3	Ability [K2,K3		its to app	ly access	manage	ment tec	hniques	and priva	acy pro	otocols in	n IoT sy	vstems
CO4	-	of studer 3, K4, K5	-	lement re	eal field	problem	by gain	ed knowle	edge o	f Cloud	security	' in
Course	Outcom	e to Pro	gram Ou	tcomes,	Mappin	g (Scale	1: Low	, 2: Medi	um, 3	: High)		
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	3	2	2	-	-	-	-	1	1	2
CO2	3	3	2	3	3	_	-	-	1	1	2	2
CO3	3	3	2	3	3	_	-	-	1	1	2	3
CO4	3	3	2	3	3	-	-	-	1	1	2	3
Course	Content	1 ,					1			1		No of lectures

Approved by BoS of USAR: 15/06/2023, Approved by AC sub-committee: 4/07//23 Applicable from Batch admitted in Academic Session 2022-23 Onwards

Unit I

Unit I Introduction: Securing the Internet of Things	
Security Requirements in IoT Architecture, Security in Enabling Technologies, Security Concerns in IoT Applications. Security Architecture in the Internet of Things, Security Requirements in IoT, Insufficient Authentication/Authorization, Insecure Access Control, Threats to Access Control, Privacy, and Availability, Attacks Specific to IoT. Vulnerabilities, Secrecy and Secret, Key Capacity, Authentication/Authorization for Smart Devices, Transport Encryption, Attack and Fault trees, The secure IoT system implementation lifecycle.	[10]
Unit II Cryptographic Fundamentals for IoT:	
Cryptographic primitives and its role in IoT, Encryption and Decryption, Hashes, Digital Signatures, Random number generation, Cipher suites, Key management fundamentals, Cryptographic controls built into IoT messaging and communication protocols, IoT Node Authentication.	[10]
Unit III	
Access Management and Privacy Preservation: Identity lifecycle, Authentication credentials, IoT IAM infrastructure, Authorization with Publish/Subscribe schemes, Access control. Privacy Preservation Data Dissemination, Privacy Preservation for IoT Used in Smart Building, Exploiting Mobility Social Features for Location Privacy Enhancement in Internet of Vehicles, Lightweight and Robust Schemes for Privacy Protection in Key Personal IoT Applications: Mobile WBSN and Participatory Sensing.	[10]
Unit IV	
Cloud Security and Case Study for IoT: Cloud services and IoT, Offerings related to IoT from cloud service providers, Cloud IoT security controls, an enterprise IoT cloud security architecture, New directions in cloud enabled IoT computing, Case Study of Real Time Security IoT Application.	[10]
Text Books:	
 [T1] Fei HU, "Security and Privacy in Internet of Things (IoTs): Models, Algorithms, and Implementations", CRC Press,2016 [T2] Russell, Brian and Drew Van Duren, "Practical Internet of Things Security", Packt Publish 2016. 	hing,
Reference Books:	
 [R1] Ollie Whitehouse, "Security of Things: An Implementers' Guide to Cyber-Security forIn Things Devices and Beyond", NCC Group, 2014. [R2] Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", 1 st Edition, Apress Publications, 2013. 	ternet of

1

Delhi - 110092

Paper o	ode: A	RI 423								L	T/P	Credit
•			Theory	y and Co	oding T	echniqu	ies			4	0	4
Aarkin Teache	ig Sche ers Cont	me: inuous	Evaluat	ion: 25] on: 75 M	Marks						1	
		•		ER SET		Maxim	um Mai	rks: 75				
> '	There sl	hould be	e 9 ques	stions in	the end	term exa	aminatio	on questi	on pape	r		
>	Questio	n No. 1	should	be com	oulsory a	and cove	er the en	tire sylla	abus. Th	is questi	on should	l have
objecti	ve or sh	ort ans	wer typ	e questic	ons. It sh	ould be	of 15 m	arks.		-		
> .	Apart fr	om Que	estion N	Io. 1, the	rest of	the pape	er shall c	onsist o	f four ur	nits as pe	r the syll	abus.
				uestions ild be 15		ver, stud	ents may	y be ask	ed to att	empt onl	y 1 quest	ion from
> '	The que	estions a	are to be	e framed	keeping	g in view	the lear	rning ou	tcomes	of course	e/paper. 7	The
standaı	d/ level	of the	question	ns to be	asked sh	ould be	at the le	evel of th	ne presci	ribed tex	tbooks.	
> ′	The req	uiremer	nt of (sc	ientific)	calculat	ors/log-	-tables/	data-tab	les may	be speci	fied if red	luired
Cours	e Outco	omes: B	loom's	Knowle	edge Lev	vel (KL))					
CO1		lity of s . , K2]	students	to unde	erstand c	oncepts	, princip	oles, and	applica	tions of	informati	on theory.
CO2	Abi K4]	•	students	to unde	rstand a	nd apply	y block	codes fo	or error o	control c	oding. [H	K1,K2,K3
CO3		•		to use v 2,K3, K		ypes of	convolu	tion cod	les for c	hannel e	ncoding]	processing
CO4		•		to apply d applic		-		niques w	ith text,	audio, s	peech, in	age and
Course	Outcor	me to P	rogran	n Outco	mes, Ma	apping (Scale 1	: Low, 2	: Mediu	ım, 3: H	igh)	
CO/	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
PO												
CO1	3	3	3	2	2	-	-	-	-	1	1	2
CO2	3	3	2	3	3	-	-	-	1	1	2	2
CO3	3	3	2	3	3	-	-	-	1	1	2	3
CO4	3	3	2	3	3	-	-	-	1	1	2	3
Course	e Conte	ent										No of lectures

_____ Approved by BoS of USAR: 15/06/2023, Approved by AC sub-committee: 4/07//23 Applicable from Batch admitted in Academic Session 2022-23 Onwards Page | 83

Unit I Introduction: Introduction to Information Theory: Modeling of information sources – source coding theorem – source coding algorithms – modeling of communication channels – channel capacity – bounds on communication, mathematical model of information, a logarithmic measure of information, Shannon-Fano coding, Huffman coding, extended Huffman coding– Joint and conditional entropies, mutual information, discrete memory less channels–BSC, BEC– Channel capacity, Shannon limit.	[10]
Unit II Error Control Coding Definitions and Principles: Hamming weight, Hamming distance, minimum distance decoding, single parity codes, Hamming codes, repetition codes, linear block codes, cyclic codes, syndrome calculation, shortened cyclic codes, majority logic decoding for cyclic codes, encoder and decoder, CRC.	[10]
 Unit III Convolution Codes and Compression Techniques Convolutional codes: – code tree, trellis, state diagram - Encoding Decoding: Sequential search and Viterbi algorithm. Principle of turbo coding, types of errors, error control strategies. Compression Techniques: Principles – Text compression – Static Huffman Coding – Dynamic Huffman coding – Arithmetic coding – Image Compression – Graphics Interchange format – Tagged Image File Format – Digitized documents – Introduction to JPEG standards. 	[10]
Unit IV Source Coding: Text, Audio and Speech Source code: Definition, techniques, Text: Adaptive Huffman coding, arithmetic coding, variable-length codes, LZW algorithm – Audio: Linear predictive coding (LPC), Perceptual coding, masking techniques, psychoacoustic model, MEG audio layers I,II,III, Dolby AC3 - Speech: Channel vocoder, linear predictive coding.	[10]
Text Books: [T1] Ranjan Bose, Information Theory, Coding and Cryptography, Tata McGraw-Hill, Second 2002. [T2] P. S. Satyanarayana, Concepts of Information Theory and Coding, Dynaram Publication, 2003.	
 Reference Books: [R1] Richard B. Wells, <i>Applied Coding and Information Theory for Engineers</i>, Pearson Education First Indian Reprint, 2004. [R2] Richard E. Blahut, <i>Algebraic Codes for Data Transmission</i>, Cambridge University Press, 2 [R3] Shu Lin and Daniel J.Costello, <i>Error Control Coding – Fundamentals and Applications</i>, See Edition, 2004. [R4] Thomas M Cover and Joy A Thomas, <i>Elements of Information Theory</i>, MGH 2006. 	.003.

DETAILED SYLLABUS FOR OPEN AREA ELECTIVE AIDS/AIML/IIOT/AR

	Code: Al	RO 371								L	T/P	Credits
Subject	: 3D-Pr	inting T	echnolo	gies						3	0	3
Markin	g Schen	ne:		-								
		uous Ev		-		•						
End Ter	m Theor	ry Exami	ination:	As per u	niversity	v examina	ation nor	rms from	time to	time.		
INSTR	UCTIO	NS TO I	PAPER	SETTE	RS: Ma	ximum N	Marks :	As per U	J niversi	ty norm	S	
	There sho	ould be 9	questions	in the er	nd term e	xaminatic	on questio	n paper				
				ompulsor	y and cov	ver the en	tire syllat	ous. This	question	should ha	ve objecti	ve or shor
		pe questi m Questi		the rest of	of the par	er shall c	onsist of	four units	as ner th	ne svllabu	s Everv i	nit should
	-	questions							-	•	-	int should
	-			-	U U		Ū.		course/pa	aper. The	standard/	level of th
	•	to be ask irement of				•				1:6	- J	
	-	nes [Bloc				-	uata-table	s may be	specifice	i ii iequii	cu	
C O3: A	bility of K2, K3,	K4]	to explo to know	ore vario v about e	ous liquic extrusion	l-based A 1, sheet-la	AM proce aminatio	n and po	(1, K2, I) wder-ba	K3, K4] sed AM	processe	
CO3: A] CO4: A	bility of K2, K3, bility of	students K4] students	to explo to knov to deve	ore vario v about e lop unde	ous liquid extrusion erstandin	l-based A a, sheet-la ag about t	AM proce aminatio the meta	esses. [K in and po l base Al	M proces	X3, K4] sed AM	processe , K2, K3	5, K4]
CO3: A] CO4: A CO/PO	bility of K2, K3, bility of PO01	Students K4] Students PO02	to explo to know to deve PO03	ore vario v about e lop unde PO04	ous liquid extrusion erstandin PO05	l-based A 1, sheet-la	AM proce aminatio	esses. [K in and po	1, K2, I wder-ba M proces PO09	K3, K4] sed AM sses. [K 1 PO10	processe , K2, K3 PO11	, K4] PO12
CO3: A] CO4: A CO/PO CO1	bility of K2, K3, bility of PO01 3	<pre>students K4] students f students PO02 2</pre>	to explo to know to deve PO03 2	ore vario v about e lop unde PO04 3	erstandin PO05 2	l-based A a, sheet-la ag about t	AM procearmination the metal PO07	esses. [K in and po l base Al	M proces PO09 3	X3, K4] ssed AM sses. [K 1 PO10 1	processe , K2 , K3 PO11 2	PO12
CO3: A I CO4: A CO/PO CO1 CO2	bility of K2, K3, bility of PO01	Students K4] Students PO02	to explo to know to deve PO03	ore vario v about e lop unde PO04	ous liquid extrusion erstandin PO05	l-based A a, sheet-la ag about t	AM procearmination the metal PO07	esses. [K in and po l base Al	1, K2, I wder-ba M proces PO09	K3, K4] sed AM sses. [K 1 PO10	processe , K2, K3 PO11	, K4] PO12
CO3: A CO4: A CO/PO CO1 CO2 CO3	bility of K2, K3, bility of PO01 3 3	students K4] students PO02 2 2 2	to explose to know to deve PO03 2 3	PO04 3 3	erstandin PO05 2 2 2	l-based A a, sheet-la ag about t	AM procearmination the metal PO07	esses. [K in and po l base Al	I, K2, I wder-ba M proces PO09 3 3	K3, K4] ssed AM sses. [K1 PO10 1 1	processes , K2 , K3 PO11 2 2	PO12 3 3
CO3: A I CO4: A CO/PO CO1 CO2 CO3 CO4	bility of K2, K3, bility of PO01 3 3 3	First students K4] students PO02 2 2 3	to explose to know to deve PO03 2 3 3 3	PO04 3 3 3 3	erstandin PO05 2 2 3	l-based A a, sheet-la ag about t	AM procearmination the metal PO07	esses. [K n and po l base Al	1, K2, I wder-ba M process PO09 3 3 3 3	X3, K4] ssed AM sses. [K1 PO10 1 1 1	processes , K2 , K3 PO11 2 2 3	PO12 3 3 3 3

Page | 92

Unit II Vat Photopolymerization AM Processes: Stereolithography (SL), Materials, Process Modeling, SL resin curing process, Mask Projection Processes, Two-Photon vat photopolymerization. Case studies Material Jetting AM Process: Material Jetting Process, Materials, Process Benefits and Drawbacks, Applications of Material Jetting Processes. Case studies.	[9]
Unit III Extrusion-Based AM Processes: Fused Deposition Modelling (FDM), Principles, Materials, Process Modelling, Plotting and path control, Bio-Extrusion, Contour Crafting. Case studies Sheet Lamination AM Processes: Bonding Mechanisms, Materials, Laminated Object Manufacturing (LOM), Ultrasonic Consolidation (UC), Gluing, Thermal bonding, LOM and UC applications, case studies. Powder Bed Fusion AM Processes: Selective laser Sintering (SLS), Powder fusion mechanism and powder handling, SLS Metal and ceramic part creation, Electron Beam melting(EBM). Case studies.	[9]
Unit IV Directed Energy Deposition AM Processes: Process Description, Material Delivery, Laser Engineered Net Shaping (LENS), Direct Metal Deposition (DMD), Electron Beam Based Metal Deposition Additive friction stir deposition process: principle, parameters, applications, functionally graded additive manufacturing components, Case studies. Wire Laser/Arc Additive Manufacturing: Process, parameters, applications, advantages and disadvantages, case studies.	[9]
 Text Books: [T1] Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, Ian Gibson, David W Rosen, Brent Stucker, Springer, 2015, 2nd Edition. [T2] 3D Printing and Additive Manufacturing: Principles & Applications, Chua Chee Kai, Leong Ka World Scientific, 2015, 4th Edition. [T3] Additive Manufacturing, Second Edition, Amit Bandyopadhyay Susmita Bose, CRC Press Tay & amp; Francis Group, 2020. [T4] Additive Manufacturing: Principles, Technologies and Applications, C.P Paul, A.N Junoop, McGrawHill, 2021 	
 Reference Books: [R1] Rapid Prototyping: Laser-based and Other Technologies, Patri K. Venuvinod and Weiyin Ma, S 2004. [R1] Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Toc D.T. Pham, S.S. Dimov, Springer 2001. [R1] Design for Advanced Manufacturing: Technologies and Process, Laroux K, Gillespie, McGraw 2017. [R1] Additive Manufacturing Technologies, Gibson, Ian, David W. Rosen, Brent Stucker, and Mahy Khorasani, Springer, 2021. 	oling, /Hill,

Approved by AC sub-committee : 04/07/2023

aper Co	ode: AF	RO 373								L	T/P	Credits
Subject:	Mobile	Applic	ation De	velopm	ent					3	0	3
Aarking	s Schem	ie:										
Teachers	Contin	uous Eva	aluation:	As per u	university	y examir	nation no	orms from	n time to	time.		
End Term	n Theor	y Exami	nation: A	As per un	iversity	examina	tion nor	ms from	time to t	ime.		
NSTRU	CTION	NS TO P	APER S	SETTEF	RS: Max	imum N	Iarks : A	As per U	niversit	y norms	5	
≻ Th	here sho	uld be 9 d	questions	in the en	d term ex	amination	n questio	n paper				
				mpulsory	and cove	er the ent	ire syllab	us. This c	juestion s	hould hav	ve objecti	ve or shor
		pe questio			6.1	1 11		c			-	
-	_							tour units only 1 qu	—			nit should
		-			•		-	comes of c				level of
	_			_	-		-	textbooks				
≻ Tł	he requi	rement of	(scientifi	ic) calcul	ators/ log	-tables/ d	ata-tables	s may be	specified	if require	ed	
								•	-			
Course C	Outcom	es [Bloo	m's Kn	owledge	Level (I	KL)]:		•	-			
C O1: Ab	oility of	students	to under	rstand an	droid SI	DK. [K1 ,	, K2]		_			
C O1: Ab C O2: Ab	oility of bility of	students f studen	to under ts to Ide	rstand an entify va	droid SI rious co	DK. [K1 ,	, K2]		_	that ma	ke it uni	ique fron
C O1: Ab C O2: At programn	oility of bility of ning for	students f studen r other pl	to under ts to Ide atforms.	rstand an entify va [K1, K 2	droid SI rious co 2, K3]	OK. [K1 , oncepts of	, K2] of mobil	le progra	umming			ique fron ed mobil
CO1: Ab CO2: Ab programm CO3: Ab nterfaces	bility of bility of ning for bility of s. [K2,]	students f studen r other pl students K3, K4]	to under ts to Ide atforms. s to utili	rstand an entify va [K1, K 2 ze rapid	droid SI arious co 2, K3] prototyp	OK. [K1 , oncepts of	, K2] of mobil nniques (le progra to desigr	amming and dev	velop so	phisticat	ed mobile
CO1: Ab CO2: At programm CO3: Ab nterfaces CO4: Ab	bility of bility of ning for bility of s. [K2,] bility of	students f studen other pl students K3, K4] students	to under ts to Ide atforms. s to utili to deplo	rstand an entify va [K1, K 2 ze rapid by applic	droid SI rious co 2, K3] prototyp ations to	DK. [K1 , oncepts of oing tech the And	, K2] of mobil nniques t roid man	le progra to desigr rketplace	amming a and det for distr	velop so ribution.	phisticat [K2, K3	ed mobil 9, K4]
CO1: Ab CO2: Ab programm CO3: Ab nterfaces	bility of bility of ning for bility of s. [K2,] bility of	students f studen r other pl students K3, K4]	to under ts to Ide atforms. s to utili	rstand an entify va [K1, K 2 ze rapid by applic	droid SI rious co 2, K3] prototyp ations to	DK. [K1 , oncepts of oing tech the And	, K2] of mobil nniques (le progra to desigr	amming and dev	velop so	phisticat [K2, K3	ed mobile
CO1: Ab CO2: At programm CO3: Ab nterfaces CO4: Ab	bility of bility of ning for bility of s. [K2,] bility of	students f studen other pl students K3, K4] students	to under ts to Ide atforms. s to utili to deplo	rstand an entify va [K1, K 2 ze rapid by applic	droid SI rious co 2, K3] prototyp ations to	DK. [K1 , oncepts of oing tech the And	, K2] of mobil nniques t roid man	le progra to desigr rketplace	amming a and develocities for district	velop so ribution.	phisticat [K2, K3	ed mobil 9, K4]
CO1: Ab CO2: Ab programm CO3: Ab nterfaces CO4: Ab CO/PO I	bility of bility of ning for bility of s. [K2 , 1 bility of PO01	students f student r other pl students K3, K4] students PO02	to under ts to Ide atforms. s to utili to deplo PO03	rstand an entify va [K1, K2 ze rapid by applic PO04	droid SI rious co 2, K3] prototyp ations to PO05	DK. [K1 , oncepts of oing tech the And	, K2] of mobil nniques t roid man	le progra to desigr rketplace	amming a and develocities for district	velop so ribution.	phisticat [K2, K3	ed mobile 5, K4] PO12
CO1: Ab CO2: Ab programm CO3: Ab nterfaces CO4: Ab CO/PO I CO1	bility of bility of ning for bility of s. [K2 ,] bility of PO01 3	students f student r other pl students K3, K4] students PO02 3	to under ts to Ide atforms. s to utili to deplo PO03 3	rstand an entify va [K1, K2 ze rapid by applic PO04 2 3	adroid SI rious co 2, K3] prototyp ations to PO05 2	DK. [K1 , oncepts of oing tech the And	, K2] of mobil nniques t roid man	le progra to desigr rketplace	amming a and develocities for district	velop so ribution.	phisticat [K2, K3 PO11 1	ed mobile 6, K4] PO12
CO1: Ab CO2: Ab programm CO3: Ab nterfaces CO4: Ab CO/PO I CO1 CO1	bility of bility of ning for bility of s. [K2 , 1 bility of PO01 3 3	students f students r other pl students K3, K4] students PO02 3 3 3	to under ts to Ide atforms. s to utili to deplo PO03 3 2	rstand an entify va [K1, K2 ze rapid by applic PO04 2 3	droid SI rious co 2, K3] prototyp ations to PO05 2 3 3	DK. [K1, oncepts of the And PO06	, K2] of mobil nniques t roid man	le progra to desigr rketplace	amming a and dev for distr PO09 - 1	velop so ribution. PO10 1	phisticate [K2, K3 PO11 1 2	ed mobile 6, K4] PO12

Introduction to mobile phone generations – 1G to 5G, Smart phone architecture-ARM and Intel architectures, Power Management, Screen resolution, Touch interfaces, Memory-Sensors, I/O interfaces, GPS, Application deployment. Mobile OS Architectures-Kernel structure-Comparing and Contrasting architectures of Android, iOS and Windows, Darwin vs. Linux vs. Windows, Runtime (Objective-C vs. Dalvik vs. WinRT), Approaches to power management and Security.

Approved by BoS of USAR : 15/06/2023, Approved by AC sub-committee : 04/07/2023 Applicable from Batch Admitted in Academic Session 2021-22 Onwards

[8]

Unit II Mobile Application Architectures: Client-Server-Connection Types-Synchronization-Architectural Patterns-Architectural Design Tenets. Mobile Infrastructure: Mobile Device Types-Mobile Device Components-Connection Methods. Mobile Client Applications: Thin Client-Fat Client-Web Page Hosting-Best Practices, Issues-Existing Web Architectures and Back-End Systems Security Issues.	[10]
Unit III Internet Programming: IP: Packet Format, Addressing, Addressing Class, Routing, ProtocolsNetwork: ARP, ICMP, DHCP, and Transport: TCP, UDP. IPv6, Wireless IP, FTP, SNMP, SMTP. Domain: DNS, DDNS, NIS, LDAP. Graphics and animation – Custom views – canvas - animation APIs - multimedia – audio/video	[10]
playback and record - location awareness, and native hardware access (sensors such as accelerometer and gyroscope).	
Unit IV Testing Mobile Apps and Taking Apps to Market: Debugging mobile apps, White box testing, Black box testing, and test automation of mobile apps, JUnit for Android, Robotium, Monkey Talk, Versioning, signing and packaging mobile apps, distributing apps on mobile marketplace.	[8]
 Text Books: [T1] Anubhav Pradhan, Anil V Deshpande, "Mobile Apps Development", First Edition, Wiley India [T2] Lauren Darcey and Shane Conder, "Android Wireless Application Development", Pearson Edit 2nd ed. (2011). 	-
 Reference Books: [R1] Erik Hellman, "Android Programming – Pushing the Limits", 1st Edition, Wiley India Pvt Ltd [R2] Dawn Griffiths and David Griffiths, "Head First Android Development", 1st Edition, O'Reil Publishers, 2015. [R3] J F DiMarzio, "Beginning Android Programming with Android Studio", 4th Edition, Wiley In Ltd, 2016. ISBN-13: 978-8126565580. 	lly SPD

[R4]Anubhav Pradhan, Anil V Deshpande, "Composing Mobile Apps" using Android, Wiley 2014, ISBN: 978-81-265-4660-2.

Paper (Code: A	RO 375								L	T/P	Credits
Subject	: Analy	sis and I	Design o	f Algori	thm					3	0	3
Feacher		ne: iuous Ev ry Exam		-		•						
		NS TO I		-							IS	
> (> / - / - / - / - / - / - / - / -	Question short ans Apart fro have two The quest the quest The requi Outcon bility of algorithr bility of	wer type of m Questions tions are to ions to be irement of res [Blooks students n [K1, K students students	ould be co questions on No. 1, s. Howeve to be fram a sked sh f (scientif pm's Kn s to unde 5]. s to unde s to unde	ompulsor the rest of er, studen ned keepi ould be a fic) calcu owledge rstand a erstand a	y and cov of the pap nts may b ing in vie at the leve lators/ log e Level (nd evalu nd apply Greedy A	ver the en ber shall c e asked to w the leased of the p g-tables/ KL)]: ate the c the con- algorithm	tire syllab consist of to attempt rning outdorescribed data-table oncepts of cept of D ns [K4].	four units only 1 qu comes of textbook es may be complex Dynamic	s as per the lestion fro course/pa ss. specified ity of alg Program	ne syllabu om each u aper. The l if requir gorithm <i>a</i> ming [K	unit. standard/ ed und types	unit should level of
CO4: A CO/PO		students	1	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	3	3	2	_	_	_	_	1	1	2
CO2	3	3	3	3	2	-	_	-	-	1	1	2
C O 3	3	3	3	3	2	-	-	-	-	1	1	3
CO4	3	3	3	3	2	-	-	-	-	1	1	3
Course	Conten	t										No of lectures
little-ol method	h notatio 1, substi	tations for on, the li tution n ion sort,	ttle-ome	ga notati master 1	ion, Rec nethod,	urrence Data St	relations ructures	iteratio for Dis	n metho sjoint Se	d, recurs ets,. Con	ion tree plexity	[10]

Unit II Ingredients of Dynamic Programming, emphasis on optimal substructure , overlapping substructures, memorization. Matrix Chain Multiplication, Longest common subsequence and optimal binary search trees problems, 0-1 knapsack problem, Binomial coefficient computation through dynamic programming. Floyd Warshall algorithm.	[10]
Unit III Greedy Algorithms: Elements of Greedy strategy, overview of local and global optima, matroid, Activity selection problem, Fractional Knapsack problem, Huffman Codes, A task scheduling problem. Minimum Spanning Trees: Kruskal's and Prim's Algorithm, Single source shortest path: Dijkstra and Bellman Ford Algorithm.	[10]
Unit IV The naïve String Matching algorithm, The Rabin-Karp Algorithm, String Matching with finite automata, The Knuth-Morris Pratt algorithm.	[8]
 Text Books: [T1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction to algorithm press. [T2] Kleinberg, J., & Tardos, E. (2006). Algorithm design. Pearson Education India. 	s. MIT
Reference Books:	

[R1] Baase, S. (2009). *Computer algorithms: introduction to design and analysis*. Pearson Education India.

Paper Code: ARO 377	L	T/P	Credits
Subject: Software Engineering	3	0	3

Marking Scheme:

Teachers Continuous Evaluation: As per university examination norms from time to time. End Term Theory Examination: As per university examination norms from time to time.

INSTRUCTIONS TO PAPER SETTERS: Maximum Marks : AS per University norms

- > There should be 9 questions in the end term examination question paper
- Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions.
- Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, students may be asked to attempt only 1 question from each unit.
- ➤ The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks.
- > The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required

Course Outcomes [Bloom's Knowledge Level (KL)]:

CO1: Student will be able to understand the concepts of Software Engineering.[K1, K2, K3]

CO2: Capability to perform requirement analysis and project planning of software systems. **[K2, K3] CO3:** Student would be able to meet and understand the design and reliability of software systems.**[K1, K2,**

K4]

CO4: Student would be able software testing techniques and software maintenance. [K2, K3,K4]

					-	-						
CO/P O	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	3	3	2	-	-	-	1	1	1	2
CO2	3	3	3	3	2	-	-	-	1	2	1	2
CO3	3	2	3	3	2	-	-	-	1	1	1	3
CO4	3	3	3	2	3	2	-	-	1	1	1	3
Course	Conten	t										No of lectures

Unit I Introduction: Software Engineering Paradigms. Software processes and its models (waterfall, Increment Process Models, Prototype Model, RAD, Spiral Model, Rational Unified Process) Agile Development model, plan driven vs agile model of development, agile methods and development techniques.	[10]
Unit II Software Requirement Analysis and Specification: Software Requirement Process, Functional and non-functional requirements, Quantifiable and Quality Requirements, System and software Requirements, requirement elicitation methods, requirement analysis and validation, requirement review or requirement change, SRS document. System modelling: Interaction models: Use case diagram, sequence diagrams, Structural models: class diagrams, generalization, aggregation, Behavioural models: ER diagrams, Data flow diagrams, data dictionaries.	[10]
Unit III Software Metrics: Project Metrics, Product Metrics and Process Metrics. Information flow Model Software Design: Architectural views and patterns, Modularity (cohesion and coupling), Information hiding, Functional independence, Function Oriented Design, Object Oriented Design, User Interface Design.	[10]
Unit IV Software Testing: Software process, Functional testing: Boundary value analysis, Equivalence class testing, Decision table testing, Cause effect graphing, Structural testing: Path testing, Data flow and mutation testing, unit testing, integration and system testing, User testing (alpha, beta and acceptance testing).	[10]
 Text Books: [T1] Pressman, R. S. (2005). Software engineering: a practitioner's approach. Palgrave macmillar [T2] Aggarwal, K. K. (2005). Software engineering. New Age International. [T3] Ian Sommerville, "Software Engineering", 10th edition, Pearson, 2018. 	1.
 Reference Books: [R1] Sommerville, I. (2011). Software Engineering, 9/E. Pearson Education India. [R2] Jalote, P. (2012). An integrated approach to software engineering. Springer Science & Busi Media. [R3] Bruegge, B., & Dutoit, A. H. (2009). Object–oriented software engineering. using uml, patter java. Learning, 5(6), 7 [R4] Blaha, M., & Rumbaugh, J. (2005). Object-oriented modeling and design with UML. Pearson Education India. 	erns, and

Approved by AC sub-committee : 04/07/2023 rds Page | 99

Paper Code: ARO 379 T/P L Credits **Subject: Internet of Things** 3 0 3 Marking Scheme: Teachers Continuous Evaluation: As per university examination norms from time to time. End Term Theory Examination: As per university examination norms from time to time. **INSTRUCTIONS TO PAPER SETTERS: Maximum Marks : As per University norms** > There should be 9 questions in the end term examination question paper > Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. > Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, students may be asked to attempt only 1 question from each unit. > The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks. > The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required Course Outcomes [Bloom's Knowledge Level (KL)]: **CO1:** Ability of students to implement the basic knowledge of Internet of things and protocols. **[K1, K2, K3] CO2:** Ability of students to implement knowledge of IoT in some of the application areas where IoT can be applied and learn about the middleware for IoT. [K1, K2] CO3: Ability of students to utilize the concepts of IoT architecture, IoT reference model and overview of IoTivity stack architecture. **[K1, K2, K3]** CO4: Ability of students to utilize and implement solid theoretical foundation of the IoT Platform and System Design. [K1, K2] **CO/PO PO01 PO02 PO03 PO04 PO05** PO06 **PO07 PO08 PO09 PO10** PO11 PO12 3 2 2 2 3 3 3 1 1 3 2 3 **CO1** 3 3 3 3 2 2 1 1 3 2 2 3 **CO2** 3 3 3 2 2 1 3 2 2 3 3 1 CO3

Course Content

3

3

3

3

2

Unit I

CO4

Introduction to IoT: Meaning of IoT, Importance of IoT, Elements of an IoT ecosystem, Technology drivers, Business drivers, Trends and implications, Overview of Governance, Privacy [8] and Security Issues. Technologies involved in IoT development, Internet web and Networking technologies, Infrastructure, Overview of IoT supported Hardware platforms.

2

1

1

3

2

2

3

No of

lectures

Unit II IoT protocols: Protocol Standardization for IoT, Efforts, M2M and WSN Protocols, Role of M2M in IoT, M2M Value Chains, IoT Value Chains, An emerging industrial structure for IoT, SCADA and RFID Protocols, Issues with IoT Standardization, Unified Data Standards Protocols, IEEE802.15.4–BACNet Protocol, Modbus, KNX, Zigbee, Network layer, APS layer – Security.	[9]
Unit III IoT Architecture: IoT Open-source architecture (OIC), OIC Architecture & Design principles IoT reference Model and Architecture: Functional View, Information View, Deployment and Operational View, IoT Devices and deployment models, IoTivity: An Open source IoT stack Overview: IoTivity stack architecture, Resource model and Abstraction.	[10]
 Unit IV Web of things: Web of Things versus Internet of Things, Two Pillars of the Web, Architecture Standardization for WoT, Platform Middleware for WoT, Unified Multitier WoT Architecture: WoT Portals and Business Intelligence IoT applications Applications for industry: Future Factory Concepts, Smart Objects, Smart Applications. Study of existing IoT platforms /middleware. 	[8]
Toyt Dooks	

Text Books:

- [T1] Zhou, H. (2012). The internet of things in the cloud. Boca Raton, FL: CRC press.
- [T2] Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds) (2011) Architecting the Internet of Things, Springer.
- [T3] Easley, D., & Kleinberg, J. (2010). *Networks, crowds, and markets: Reasoning about a highly connected world*. Cambridge university press.
- [T4] Hersent, O., Boswarthick, D., & Elloumi, O. (2011). *The internet of things: Key applications and protocols*. John Wiley & Sons.

Reference Books:

[R1] Bahga, A., & Madisetti, V. (2014). Internet of Things: A hands-on approach. Vpt.Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", 1st Edition, Apress Publications, 2013

[R2] Pfister, C. (2011). *Getting started with the Internet of things: connecting sensors and microcontrollers to the cloud.*" O'Reilly Media, Inc.".

Paper	Code: A	ARO 372	2							L	T/P	Credits
Subje	ct: Oper	ations N	lanagei	nent						3	0	3
Teach End T	erm The	e me: inuous E ory Exar DNS TO	ninatior	n: As per	r univers	sity exar	nination	norms f				
\gg	There sho	uld be 9 c	juestions	in the er	nd term e	examinati	on questi	on paper	•			
> (Question	No. 1 sho	ould be c	compulso	ry and c	over the	entire syl	llabus. T	his quest	ion shou	d have o	bjective of
S	short ansv	ver type q	uestions	. It shoul	d be of 1	5 marks.						
> I	Apart from	n Questio	n No. 1,	the rest o	f the pap	er shall c	onsist of	four unit	s as per th	ne syllabu	s. Every	unit should
		questions 15 marks		er, studer	nts may b	be asked t	to attempt	t only 1 c	question f	from each	unit. Eac	ch question
				ned keep	ing in vie	ew the le	arning ou	tcomes of	of course	paper. Th	ne standa	rd/ level of
	-	ons to be		-	-		-			F • F • • • • • •		
>]	- Fhe requi	rement of	(scientif	fic) calcu	lators/ lo	og-tables/	' data-tabl	les may l	be specifi	ed if requ	ired.	
Cours	se Outco	mes [Bl	oom's F	Knowled	lge Lev	el (KL)]	:					
CO1		7 of stude s [K2, K		levelop t	he basic	e knowle	edge of o	peration	ns manag	gement a	nd indus	trial plan
CO2	Ability	of stude	ents to c	alculate	the dem	nand fore	ecast and	l design	the proc	ess acco	rdingly.	[K2, K3]
CO3	Ability	of stude	ents to u	se vario	us inver	ntory mo	dels for	the inve	entory pl	anning.	K2, K3,	K4]
CO4	Ability [K1, K		ents to	understa	nd the i	mportan	ce of ma	aintenan	ce for th	ne manut	facturing	industry
CO/ PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	2	2	2	2	2	2	-	-	-	-	2	3
CO2	3	3	3	3	3	2	-	-	-	-	2	3
CO3	3	3	3	3	3	2	-	-	-	-	2	3
CO4	3	2	2	2	3	2	-	-	-	-	2	3
Cours	se Conte	ent										No of Lecture
Histor	duction ry of Pro	to Production	and Op	erations	Manag	ement; l	Definitio					[9]

Management Definition of Operations Management: An Outline of Operations Strategy; Factors Affecting Operations Management, Operations Planning and Control Plant Layout and Material Handling Site Selection, Types of Layout, Factors Affecting Layout, Plant Building, Flexibility and Expandability, Principles of Material Handling, Types and Selection of Materials Handling Equipment's.	
Unit II Concept of Forecasting Importance and Objectives of Forecasting, Principle of Forecasting, Classification of Forecasting; Qualitative and Quantitative Techniques of Forecasting: Qualitative Techniques, Quantitative Techniques	
Product Process and Service Design Product Selection; Definitions of Product Design and Development: Need for Product Design and Development, Process Planning and Design, Major Factors Affecting Process Design Decisions, Types of Process Designs, Interrelations among Product Design, Process Design & Inventory Policy	[9]
Unit III	
Material Management Definition and Scope; Functions; Types of Materials; Analytical Structure of Inventory Models; Material Requirement Planning (MRP); Bill of Material, Master Production Schedule; Purchase Management; Storekeeping and Issue of Materials; Material Handling; Just in Time (JIT) And Kanban Systems. Lean Manufacturing: Introduction-Definition and Scope-Continuous Vs. Lean, Production-Benefits and Methodology – Process Oriented Continuous Improvement Teams.	[9]
Inventory Management Nature of Inventories, Opposing Views of Inventories, Fixed-Order Period and Quantity Systems, Inventory Models, ABC Analysis Inventory Planning,	
Unit IV	
Manufacturing operations scheduling: Scheduling Process-Focused Manufacturing, Scheduling for Job Shop, Flexible Manufacturing System and Product Focused Manufacturing, Computerized Scheduling System, Gantt Chart Maintenance management Definition and Objective of Maintenance Management, Planned Production Maintenance, Preventive Maintenance, Machine Reliability, Reliability Centered Maintenance	[9]
Text Books:	
[T1] Productions and Operations Management, Adam & Ebert Prentice Hall, 2008[T2] Production and Operations Management: An Applied Modern Approach, Joseph S. Martinio Wiley Student Edition, 2008	ch,
Reference Books:	
[R1] Modern Production / Operations Management, Buffa, E.S., Sarin, R.K., John Willey and So 2014.	ns
[R2] Productions and Operations Management, Chase Aquilano & Richard Irwin, McGraw Hill Series 2010.	

Paper (Code: A	RO 374								L	T/P	Credits
Subject	: Metav	erse								3	0	3
Teacher		uous Ev		-		•		orms from rms from				•
INSTR	UCTIO	NS TO I	PAPER	SETTE	RS: Ma	ximum I	Marks :	As per l	U niversi	ty norm	S	
> (> / > / Course CO1: A CO2: A CO3: A CO3: A	Question answer ty Apart fro nave two The quess questions The requi Outcon bility of bility of bility of	No. 1 sho pe questi m Questi questions to be ask irement o nes [Bloo students students students	ould be co ons. on No. 1, s. Howev to be fran ted should f (scientin om's Kn to under s to under s to learr	the rest of er, studen ned keep d be at th fic) calcu nowledg rstand m erstand b	of the pap nts may b ing in vie e level of lators/ log e Level (netaverse puilding b e metave	ver the en ber shall c e asked to w the least f the presc g-tables/ of (KL)]: and AR blocks of erse will b	tire syllal onsist of o attempt rning out cribed tex data-table /VR tech the met revolutio	four units only 1 qu comes of tbooks. es may be nnologies averse [I onize eve	s as per the sestion from course/pa specified [K1, K2]. rything [e syllabu om each u per. The l if requir 2] [K1, K2	s. Every u init. standard/ ed	ve or shor init should level of th
[K3, K4 CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	2	1	1	3	-	-	-	1	2	1	3
C O2	3	2	3	3	3	-	-	-	2	2	2	3
C O3	3	2	1	3	3	-	-	-	2	2	2	3
CO4	3	3	3	3	3	-	-	-	3	2	2	3
Course Content									No of lectures			
definitio Metaver	on, The se, Der	next int no of t	ernet, A he Meta	application of the second seco	ons of t AR/VR:	he Meta Demyst	verse A		es and C	Challenge	ainty, A es of the	[10]
		• •							Working	with XF	R, Design	

Payment rails, Blockchains and metaverse.

Metaverse winners and losers, Metaversal existence, The Metaverse vs. Web 3.0, Types of the Metaverse, Cryptocurrency and the Metaverse, NFTs and the Metaverse. Unit IV Metaverse case study: Metaverse in Education: Vision, Opportunities, and Challenges; Metaverse Virtual Learning Management Based on Gamification Techniques Model to Enhance Total Experience; Metaverse Framework: A Case Study on E-Learning Environment (ELEM); Augmented Reality in Surgery: A Scoping Review, A Case Study on Metaverse Marketing of Jewelry Brand, Agricultural Metaverse: Key Technologies, Application Scenarios, Challenges and Prospects. Text Books: [T1] Matthew Ball, (2022), The Metaverse: And How It Will Revolutionize Everything, Liveright, ISBN 9781324092049 [T2] Mystakidis, S. (2022). Metaverse. Encyclopedia, 2(1), 486-497. Reference Books: [R1] Lin, H., Wan, S., Gan, W., Chen, J., & Chao, H. C. (2022). Metaverse in education: Vision,	Iteraverse winners and losers, Metaversal existence, The Metaverse vs. Web 3.0, Types of the Iteraverse, Cryptocurrency and the Metaverse, NFTs and the Metaverse. [10] Init IV Iteraverse, Cryptocurrency and the Metaverse, NFTs and the Metaverse. [8] Init IV Iteraverse case study: Metaverse in Education: Vision, Opportunities, and Challenges; Metaverse firtual Learning Management Based on Gamification Techniques Model to Enhance Total xperience; Metaverse Framework: A Case Study on E-Learning Environment (ELEM); Augmented eality in Surgery: A Scoping Review, A Case Study on Metaverse Marketing of Jewelry Brand, gricultural Metaverse: Key Technologies, Application Scenarios, Challenges and Prospects. [8] ext Books: [71] Matthew Ball, (2022), The Metaverse: And How It Will Revolutionize Everything, Liveright, ISBN: 9781324092049 [72] Mystakidis, S. (2022). Metaverse. Encyclopedia, 2(1), 486-497. eference Books: [R1] Lin, H., Wan, S., Gan, W., Chen, J., & Chao, H. C. (2022). Metaverse in education: Vision, opportunities, and challenges. arXiv preprint arXiv:2211.14951.	Unit III						
Metaverse case study: Metaverse in Education: Vision, Opportunities, and Challenges; Metaverse Virtual Learning Management Based on Gamification Techniques Model to Enhance Total Experience; Metaverse Framework: A Case Study on E-Learning Environment (ELEM); Augmented Reality in Surgery: A Scoping Review, A Case Study on Metaverse Marketing of Jewelry Brand, Agricultural Metaverse: Key Technologies, Application Scenarios, Challenges and Prospects. Text Books: [T1] Matthew Ball, (2022), The Metaverse: And How It Will Revolutionize Everything, Liveright, ISBN 9781324092049 [T2] Mystakidis, S. (2022). Metaverse. Encyclopedia, 2(1), 486-497. Reference Books: [R1] Lin, H., Wan, S., Gan, W., Chen, J., & Chao, H. C. (2022). Metaverse in education: Vision,	 Metaverse case study: Metaverse in Education: Vision, Opportunities, and Challenges; Metaverse firtual Learning Management Based on Gamification Techniques Model to Enhance Total xperience; Metaverse Framework: A Case Study on E-Learning Environment (ELEM); Augmented eality in Surgery: A Scoping Review, A Case Study on Metaverse Marketing of Jewelry Brand, gricultural Metaverse: Key Technologies, Application Scenarios, Challenges and Prospects. Fext Books: [T1] Matthew Ball, (2022), The Metaverse: And How It Will Revolutionize Everything, Liveright, ISBN: 9781324092049 [T2] Mystakidis, S. (2022). Metaverse. Encyclopedia, 2(1), 486-497. Reference Books: [R1] Lin, H., Wan, S., Gan, W., Chen, J., & Chao, H. C. (2022). Metaverse in education: Vision, opportunities, and challenges. arXiv preprint arXiv:2211.14951. 	Metaverse winners and losers, Metaversal existence, The Metaverse vs. Web 3.0, Types of the						
Virtual Learning Management Based on Gamification Techniques Model to Enhance Total Experience; Metaverse Framework: A Case Study on E-Learning Environment (ELEM); Augmented Reality in Surgery: A Scoping Review, A Case Study on Metaverse Marketing of Jewelry Brand, Agricultural Metaverse: Key Technologies, Application Scenarios, Challenges and Prospects. Text Books: [T1] Matthew Ball, (2022), The Metaverse: And How It Will Revolutionize Everything, Liveright, ISBN 9781324092049 [T2] Mystakidis, S. (2022). Metaverse. Encyclopedia, 2(1), 486-497. Reference Books: [R1] Lin, H., Wan, S., Gan, W., Chen, J., & Chao, H. C. (2022). Metaverse in education: Vision,	 [8] [8] [8] [8] [8] [8] [8] [8] [8] [8]	Unit IV						
 [T1] Matthew Ball, (2022), The Metaverse: And How It Will Revolutionize Everything, Liveright, ISBN 9781324092049 [T2] Mystakidis, S. (2022). Metaverse. Encyclopedia, 2(1), 486-497. Reference Books: [R1] Lin, H., Wan, S., Gan, W., Chen, J., & Chao, H. C. (2022). Metaverse in education: Vision, 	 [T1] Matthew Ball, (2022), The Metaverse: And How It Will Revolutionize Everything, Liveright, ISBN: 9781324092049 [T2] Mystakidis, S. (2022). Metaverse. Encyclopedia, 2(1), 486-497. Reference Books: [R1] Lin, H., Wan, S., Gan, W., Chen, J., & Chao, H. C. (2022). Metaverse in education: Vision, opportunities, and challenges. arXiv preprint arXiv:2211.14951. 	Virtual Learning Management Based on Gamification Techniques Model to Enhance Total Experience; Metaverse Framework: A Case Study on E-Learning Environment (ELEM); Augmented Reality in Surgery: A Scoping Review, A Case Study on Metaverse Marketing of Jewelry Brand,						
9781324092049 [T2] Mystakidis, S. (2022). Metaverse. Encyclopedia, 2(1), 486-497. Reference Books: [R1] Lin, H., Wan, S., Gan, W., Chen, J., & Chao, H. C. (2022). Metaverse in education: Vision,	 9781324092049 [T2] Mystakidis, S. (2022). Metaverse. Encyclopedia, 2(1), 486-497. Reference Books: [R1] Lin, H., Wan, S., Gan, W., Chen, J., & Chao, H. C. (2022). Metaverse in education: Vision, opportunities, and challenges. arXiv preprint arXiv:2211.14951. 	Text Books:						
Reference Books: [R1] Lin, H., Wan, S., Gan, W., Chen, J., & Chao, H. C. (2022). Metaverse in education: Vision,	eference Books: [R1] Lin, H., Wan, S., Gan, W., Chen, J., & Chao, H. C. (2022). Metaverse in education: Vision, opportunities, and challenges. arXiv preprint arXiv:2211.14951.		ISBN:					
[R1] Lin, H., Wan, S., Gan, W., Chen, J., & Chao, H. C. (2022). Metaverse in education: Vision,	[R1] Lin, H., Wan, S., Gan, W., Chen, J., & Chao, H. C. (2022). Metaverse in education: Vision, opportunities, and challenges. arXiv preprint arXiv:2211.14951.	[T2] Mystakidis, S. (2022). Metaverse. Encyclopedia, 2(1), 486-497.						
	opportunities, and challenges. arXiv preprint arXiv:2211.14951.	Reference Books:						
		[R1] Lin, H., Wan, S., Gan, W., Chen, J., & Chao, H. C. (2022). Metaverse in education: Vision,						
[R2] Srisawat, S., & Piriyasurawong, P. (2022). Metaverse Virtual Learning Management Based on	Gamification Techniques Model to Enhance Total Experience. International Education Studies, 15(5),	[R2] Srisawat, S., & Piriyasurawong, P. (2022). Metaverse Virtual Learning Management Based on Gamification Techniques Model to Enhance Total Experience. International Education Studies	, 15(5),					

- [R3] Dahan, N. A., Al-Razgan, M., Al-Laith, A., Alsoufi, M. A., Al-Asaly, M. S., & Alfakih, T. (2022). Metaverse framework: A case study on E-learning environment (ELEM). Electronics, 11(10), 1616.
- [R4] Kang, H. R. (2022). A Case Study on Metaverse Marketing of Jewelry Brand. Journal of Digital Convergence, 20(1), 285-291.
- [R5] Feng, C. H. E. N., Chuanheng, S. U. N., Bin, X. I. N. G., Na, L. U. O., & Haishen, L. I. U. (2022). Agricultural Metaverse: Key Technologies, Application Scenarios, Challenges and Prospects.

Paper Code: ARO 376LT/PCredits									
Subject: Industry 4.0 3 0 3									
Marking Scheme:									
Teachers Continuous Evaluation: As per university examination norms from time to time.									

End Term Theory Examination: As per university examination norms from time to time.

INSTRUCTIONS TO PAPER SETTERS: Maximum Marks : As per University norms

- > There should be 9 questions in the end term examination question paper
- Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions.
- Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, students may be asked to attempt only 1 question from each unit.
- The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks.
- > The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required

Course Outcomes [Bloom's Knowledge Level (KL)]:												
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1 3 3 3 3 2 - - 3 2 2											3	
CO2	CO2 3 3 3 3 2 - - 3 2 2											3
CO3	CO3 3 3 3 3 2 3 2 2											3
CO4	3	3	3	3	2	-	-	-	3	2	2	3
Course Content											No of lectures	
Unit I Introduction Goals and Design Principles, Historical Context, General Framework, Need of Industry 4.0, Application areas, Dissemination of Industry 4.0 and the contributing disciplines, Current situation of Industry 4.0. Introduction to Industry 4.0 to Industry 5.0 Advances.												
Industry 4.0. Introduction to Industry 4.0 to Industry 5.0 Advances. Unit II Industry 4.0 and Cyber-Physical System Cyber-Physical Systems and Next Generation Sensors, Collaborative Platform and Product Lifecycle Management, Augmented Reality and Virtual Reality technologies, Artificial Intelligence, Big Data Analytics and Advanced Analysis, Cybersecurity for Industry 4.0, Introduction to Industrial IoT: Industrial Processes, Industrial Sensing & Actuation, Industrial Internet Systems.											[9]	

Unit III Industrial IoT (IIoT) Introduction, IIoT Business models, Architecture, Industrial IoT Sensing, Industrial IoT Communication, Big Data analytics and software-defined networks, Data management with Hadoop for IIot, IIot analytics, Industrial IoT security and Fog Computing.	[9]
Unit IV Tools of Industry 4.0 Tools for Industry 4.0: Artificial Intelligence, Big Data Analytics, Machine Learning, Cloud Computing, Cyber security, Virtual Reality, Augmented Reality, IoT, Robotics, Applications domain of Industrial Internet of Things (IoT): Manufacturing, Healthcare, Education, Aerospace and Defense, Agriculture, Transportation and Logistics. Impact of Industry 4.0 on Society: Impact on Business, Government and Society.	[9]
 Text Books: [T1] Jean-Claude André, <i>Industry 4.0</i>, Wiley- ISTE, July 2019, ISBN: 781786304827, 2019 [T2] S. Misra, A. Mukherjee, and A. Roy, <i>Introduction to IoT</i>. Cambridge University Press, 2020 [T3] P. Kaliraj, T. Devi, <i>Big Data Applications in Industry 4.0</i>, ISBN 9781032008110, CRC Pres & Francis Group, 2022 Reference Books: [R1] Alasdair Gilchrist , <i>Industry 4.0- The Industrial Internet of Things</i>, Apress Berkeley, CA, 20 4842-2047-4 	ss, Taylor

Paper	Code: A	ARO 37	78							L	T/P	Credits
Subject: Supply Chain Management30											3	
Marking Scheme:Teachers Continuous Evaluation: As per university examination norms from time to time.End Term Theory Examination: As per university examination norms from time to time.INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: 75												
> T	here sho	ould be 9	questio	ns in the	e end tern	n examin	ation que	stion pap	er.			
> Question No. 1 should be compulsory and cover the entire syllabus. This question should have ob-												bjective or
short answer type questions. It should be of 15 marks.												
> Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every u												unit should
		questior 15 mar		ever, stu	dents may	y be aske	d to atten	npt only 1	question	from eac	h unit. Eac	ch question
				amed ke	ening in	view the	learning	outcomes	of cours	e/naner 「	The standa	rd/level.of
The questions are to be framed keeping in view the learning outcomes of course/paper. The standard the questions to be asked should be at the level of the prescribed textbooks.												
 The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required. 												
Course Outcomes [Bloom's Knowledge Level (KL)]:												
CO1 Ability of students to understand the strategic importance of good supply chain design, plan operation for industry. [K1, K2]										anning and		
CO2	Ability of students to analyze the performance of the supply chain. [K2, K3, K4]											
CO3	Ability of students to design and analyze the effective network for the supply chain. [K2,											2, K3, K4]
CO4	Abili	ty of stu	udents t	o under	stand the	e importa	ance of c	coordinat	ion in su	pply cha	ain. [K1,]	K2]
CO/ PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	2	2	2	2	2	2	-	-	1	-	2	3
CO2	3	3	3	3	3	2	-	-	1	-	2	3
CO3	3	3	3	3	3	2	_	-	1	-	2	3
CO4	3	2	2	2	3	2	-	-	1	-	2	3
Course Content										No of lectures		
Unit I Introduction Understanding Supply Chain, Supply Chain Performance; Supply Chain Drivers and Obstacles.										[8]		

Planning Demand and Supply in a Supply chain						
Demand Forecasting in Supply Chain, Aggregate Planning in Supply Chain, Planning Supply and Demand; Managing Predictable Variability, Economic Order Quantity Models, Reorder Point Models, Multi-Echelon Inventory Systems. Managing Uncertainty in a Supply Chain, Determining Optimal Levels of Product Availability.						
Unit II						
Supply Chain Performance						
Supply Chain Strategies, Achieving Strategic Fit, Product Life Cycle, The Minimize Local Cost View, The Minimize Functional Cost View, The Maximize Company Profit View, The Maximize Supply Chain Surplus View.	[9]					
Sourcing Decisions in Supply Chains						
Role of Sourcing in Supply Chains, Supplier Assessment, Design Collaboration, Sourcing Planning and Analysis, Market Sourcing Decisions in Practice.						
Unit III						
Network Design						
Factors Influencing Distribution in Network Design, Distribution Networks in Practice, Framework for Network Design Decisions, Models for Facility Location and Capacity Allocation, Making Network Design Decisions in Practice. Global Supply Chain Networks. Transportation in a Supply Chain Facilities Affecting Transportation Decisions, Modes of Transportation and their Performance Characteristics, Design Options for A Transport Network, Trade-offs in Transportation Decisions, Tailored Transportation, Routing and Scheduling in Transportation, Making Transportation Decisions in Practice.	[9]					
Unit IV						
Coordination in a Supply Chain Lack of Supply Chain Coordination and The Bullwhip Effect, Effect of Lack of Coordination on Performance, Obstacles to Coordination, Managerial Levers to Achieve Coordination, Achieving Coordination in Practice. Information Technology and its use in Supply Chain.	[8]					
Text Books:						
[T1] Marketing logistics: A Supply Chain Approach, Kapoor K K, Kansal Purva, Pearson Educatio [T2] Logistics and Supply Chain Management, Christopher Martin, Pearson Education Asia.	on Asia.					
Reference Books:						
[R1] Supply Chain Management–Strategy, Planning and Operation ,Sunil Chopra and Peter Meindl, Pearson/PHI,3rdEdition.						
[R2] Designing and Managing the Supply Chain: Concepts, Strategies, and Case Studies, Levi D. Kaminsky P. And Levi E.S., McGraw Hill Inc. New York.	S.,					

Paper C	oder A F	20 380								т	T/D	Credita
-										L	T/P	Credits
Subject	Subject: Software Project Management30										3	
	S Continu	ious Ev		-		sity exan						
INSTRU	JCTION	IS TO	PAPER	SETT	ERS:	Maxim	ım Mar	ks: As p	er Uni	versity 1	norms	
> (s > A s E > T o > T Course CO1: R CO2: A CO3: A	Question I hort answ apart from hould hav Each quest The quest f the quest The require Outcom Recall the analyze a	No. 1 sho yer type in Questi ye two q tion sho ons are stions to rement o es [Blo e definit and sele compos	ould be o question on No. 1 uestions uld be 1: to be fra be aske f (scient om's K tion of a cct appro-	compuls s. It sho , the res . Howev 5 marks med kee d should ific) cal- ific) cal- cal- cal- cal- cal- cal- cal- cal-	ory and c uld be of st of the p yer, stude eping in v l be at the culators/ lge Leve are proje project s	15 marks paper shall nts may b	entire syll . consist c e asked to earning ou the prescr / data-tab	abus. The of four un o attempted tibed text of the second text from the and text	is questi nits as pe conly 1 o of course books. be speci n other echnique	er the syll question : e/paper. T fied if rea types of es [K2] .	labus. Ev from eac The stand quired projects	h unit. lard/ level
CO4: A CO/PO	nalyze t			PO04		PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	3	3	2	-	-	-	1	1	1	2
CO2	3	3	3	3	2	-	-	-	1	2	1	2
CO3	3	3	3	3	2	-	-	-	1	1	1	3
CO4	3	3	3	3	3	2	-	-	1	1	1	3
Course Content									No of Lectures			
(SP), SI system, Softwa task set [Work	P Vs. oth manage re Proje and task Breakdo ing proje	ner type ment co ect sche a netwo wn Stru	es of pro ontrol. eduling rk, sche ucture].	ojects ac and pl duling, Selecti	ctivities lanning: earned v ing a pr	nent (SF covered : Basic c value ana oject, ide oject cha	oy SPM, oncepts, lysis ind entifying	categor project icators, project	izing S schedu Project scope	Ps, proje ling, det element and obj	ect as a fining a s, WBS ectives,	[0]

Unit II: Project Estimation and Evaluation: software project estimation, decomposition techniques empirical estimation models, estimation for object oriented projects, estimation for Agile development and Web engineering projects. Cost benefit analysis, cash flow forecasting, cost benefit evaluation techniques, risk evaluation. Selection of an appropriate project report; choice of process model, structured methods, rapid application development, water fall, spiral models. Prototyping delivery, Albrecht function point analysis.					
Unit III:					
Activity planning: Objectives of activity planning, project schedule, projects and activities, sequencing and scheduling activities, Network planning model; Network Diagrams : CPM, Bar Charts, Gantt Chart, PERT [Activity-on-arrow network; Activity on Node network] Precedence network; Forward pass; Backward pass; Critical path. Risk Analysis and Management: Risk and risk types, Risk Break down Structure, Risk management process, Evaluating schedule risk using PERT.	[12]				
Unit IV:					
Resource allocation & Monitoring the control : Introduction, the nature of resources, identifying resource requirements, visualizing progress, Project Tracking, Status Reports, Milestone Analysis, Actual Versus Estimated Analysis of Effort and Schedule. Software quality and project closure: Defining software quality attributes, ISO 9126, Software quality measures, Project Closure Analysis, The Role of Closure Analysis, Performing Closure Analysis.					
Project Management Case Study.					
Text Books: [T1] Software Project Management (2nd Edition), by Bob Hughes and Mike Cottrell, 1999, 7 [T2] Software Project Management, Walker Royce, 1998, Addison Wesley.	ГМН				
 Reference Books: [R1] R. S. Pressman, Software Engineering, TMH, 7th ed. [R2] Pankaj Jalote, Software project management in practice, Addison-Wesley [R3] Robert T. Futrell, Donald F. Shafer, and Linda I. Shafer, "Quality Software Project Management", 2002, Pearson Education Asia. [R4] Ramesh Gopalaswamy, "Managing Global Software Projects", 2003, Tata McGraw-Hil [R5] S. A. Kelkar, "Software Project Management" 	1				

Paper	Code: A	RO 382								L	T/P	Credits
Subjec	t: Mode	ling and	l Simula	tion						3	0	3
Teache End Te	erm The	inuous E ory Exar	valuation nination PAPER	: As per	universit	y exami	nation no	orms fro		to time.		
≫	There she	ould be 9	questions	s in the er	nd term e	xaminatio	on questio	on paper.				
>	Question	No. 1 sł	nould be	compulso	ory and co	over the e	entire syll	abus. Th	nis questi	on should	have obj	ective o
5	short ans	wer type	questions	. It shoul	d be of 15	5 marks.						
$\gg 1$	Apart from	m Questio	on No. 1,	the rest of	f the pape	r shall co	nsist of fo	our units	as per the	e syllabus.	Every un	it should
		questions 15 mark		er, studen	its may be	e asked to	attempt	only 1 qu	uestion fr	om each u	nit. Each	questior
≥]	The quest	ions are t	to be fram	ned keepi	ng in vie	w the lear	rning out	comes of	f course/p	aper. The	standard	/ level of
1	the questi	ions to be	asked sh	ould be a	t the leve	l of the p	rescribed	textbool	ks.			
≫	The requ	irement o	of (scienti	fic) calcu	lators/ lo	g-tables/	data-tabl	es may b	e specifie	ed if requi	red.	
Cours	e Outco	mes[Blo	om's Ki	nowledg	e Level	(KL)]:						
CO1	Students will gain a comprehensive understanding of the fundamental concepts of me including system abstraction, representation, and simplification. [K1]										odeling	
CO2	Students will learn about different simulation techniques used in modeling various systems. [K1, K2]											
CO3		ts will ac nulation.		actical sl	cills in u	sing sim	ulation s	oftware	tools co	mmonly ι	used in n	nodeling
CO4			earn ho lts. [K3 ,		llect rele	evant da	ta to inf	form the	e model	ing proce	ess and	validate
CO/ PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	2	3	3	-	-	-	3	3	1	2
CO2	3	2	3	2	3	-	-	-	3	3	2	2
CO3	3	3	3	2	2	-	-	-	3	2	2	3
CO4	3	3	2	3	3	-	-	-	3	3	2	3
Cours	e Conte	nt										No of lecture
Systen	luction	nment, c				0		0		of appl odels, ste		[8]

Simulation Examples: Simulation of Queuing systems, Simulation of Inventory System, Other simulation examples.	
 Unit II General Principles: Concepts in discrete - event simulation, event scheduling/ Time advance algorithm, simulation using event scheduling. Random Numbers: Properties, Generations methods, Tests for Random number- Frequency test, Runs test, Autocorrelation test. 	[8]
Unit III System Simulation: Techniques of simulation, Monte Carlo method, Experimental nature of simulation, Distributed lag models, Cobweb models Continuous system models, Analog and Hybrid simulation, Feedback systems, Computers in simulation studies. Simulation software: Comparison of simulation packages with programming languages, classification of simulation software, Description of a general purpose simulation package, Design of scenario and modules, dialog box, database, animation, plots and output, interfacing with other software, summary of results. Examples with MATLAB/ AWESIM / ARENA.	[8]
Unit IV Analysis after simulation: Importance of the variance of the sample mean, Procedure for estimating mean and variance, Subinterval method, Replication Method, Regenerative method; Variance reduction techniques, Start up policies, Stopping rules, Statistical inferences, Design of experiments. Verification and validation of simulated models, optimization via simulation. Case studies on application of modelling and simulation in manufacturing systems.	[8]
 Text Books: [T1] Averill M. Shaw, "Simulation Modeling and Analysis", Tata McGraw-Hill, 2007. [T2] Jerry Banks, John S Carson, II, Berry L Nelson, David M Nicol, Discrete Event system Simulation, Education, Asia, 4th Edition, 2007, ISBN: 81-203-2832-9. [T3] Geoffrey Gordon, "System Simulation", Prentice Hall India, 1969. Reference Books: [R1] Robert E. Shannon, "System Simulation: The Art and Science", Prentice Hall India, 1975. 	Pearson
 [R1] Robert E. Shannon, System Simulation: The Art and Science, Prentice Hall India, 1975. [R2] Charles M Close and Dean K. Frederick Houghton Mifflin, "Modelling and Analysis of D Systems:, TMH, 1993. [R3] Allan Carrie, "Simulation of manufacturing" John Wiley & Sons, 1988.)ynamic

CO1 3 3 3 3 1 - - - - 1 CO2 2 3 3 3 1 1 - - - 1 CO2 2 3 3 3 1 1 - - - 1 CO3 2 3 3 3 1 1 - - 2 CO4 3 3 3 3 1 1 - - 2 Course Content N N N N N N N	Credits		L								<u>384 384 </u>	ode: Al	Paper C
Teachers Continuous Evaluation: As per university examination norms from time to time. End Term Theory Examination: As per university examination norms from time to time. INSTRUCTIONS TO PAPER SETTERS: Maximum Marks : As per University norms > There should be 9 questions in the end term examination question paper > Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective answer type questions. > Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit have two questions. However, students may be asked to attempt only 1 question from each unit. > The questions are to be framed keeping in view the learning outcomes of course/paper. The standard lev questions to be asked should be at the level of the prescribed textbooks. > The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required COurse Outcomes [Bloom's Knowledge Level (KL)]: CO1: Ability of students to understand the basic concepts of Database Management [K1, K2] CO2: Ability of students to understand the concept of transaction management [K1, K2] CO4: Ability of students to compare different types of NoSQL Databases and RDBMS with different N databases [K4] CO2 2 3 3 1 - - 1 1 CO2 2 3 3 1 1 - - 2 1 </th <th>3</th> <th colspan="11"></th> <th>Subject</th>	3												Subject
End Term Theory Examination: As per university examination norms from time to time. INSTRUCTIONS TO PAPER SETTERS: Maximum Marks : As per University norms > There should be 9 questions in the end term examination question paper > Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective answer type questions. > Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit have two questions. However, students may be asked to attempt only 1 question from each unit. > The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/lex questions to be asked should be at the level of the prescribed textbooks. > The requirement of (scientific) calculators/log-tables/data-tables may be specified if required Course Outcomes [Bloom's Knowledge Level (KL)]: CO1: Ability of students to understand the concept of transaction management [K1, K2] CO2: Ability of students to understand the concept of transaction management [K1, K2] CO4: Ability of students to compare different types of NoSQL Databases and RDBMS with different N databases [K4] Course Content Vertical as a sign of a babase system, View of data, Relational databases, Database Architecture, Data Models, Transaction Management.											ne:	g Schem	Markin
NSTRUCTIONS TO PAPER SETTERS: Maximum Marks : As per University norms Nerre should be 9 questions in the end term examination question paper Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective answer type questions. Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit have two questions. However, students may be asked to attempt only 1 question from each unit. The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/lev questions to be asked should be at the level of the prescribed textbooks. The requirement of (scientific) calculators/log-tables/ data-tables may be specified if required Course Outcomes [Bloom's Knowledge Level (KL)]: CO1: Ability of students to understand the basic concepts of Database Management System [K2] CO3: Ability of students to understand the concept of transaction management [K1, K2] CO4: Ability of students to compare different types of NoSQL Databases and RDBMS with different N databases [K4] CO1 3 3 1 - - 1 2 CO4 3 3 3 1 - - 2 2 CO2: Ability of students to understand the concept of transaction management [K1, K2] CO4: Ability of students to compare different types of NoSQL Databases and RDBMS wi									-				
 There should be 9 questions in the end term examination question paper Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective answer type questions. Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit have two questions. However, students may be asked to attempt only 1 question from each unit. The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/lev questions to be asked should be at the level of the prescribed textbooks. The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required Course Outcomes [Bloom's Knowledge Level (KL)]: CO1: Ability of students to understand the basic concepts of Database Management System [K2] CO3: Ability of students to understand the concept of transaction management [K1, K2] CO4: Ability of students to compare different types of NoSQL Databases and RDBMS with different N databases [K4] CO/PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 P CO1 3 3 3 3 1 1 2 1 CO2 2 3 3 3 3 1 1 2 2 CO4 3 3 3 3 1 1 2 2 CO4 3 3 3 3 1 1 2 2 CO4 3 3 3 3 3 1 1 2 CO4 3 3 3 3 3 3 3 1 1 2 CO4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			ime.	time to t	ms from	tion nor	examina	iversity	As per un	nation: A	y Exami	n Theor	End Ter
 Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective answer type questions. Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit have two questions. However, students may be asked to attempt only 1 question from each unit. The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/lex questions to be asked should be at the level of the prescribed textbooks. The requirement of (scientific) calculators/log-tables/data-tables may be specified if required Course Outcomes [Bloom's Knowledge Level (KL)]: Coli Ability of students to understand the basic concepts of Database Management [K1, K2] Coli Ability of students to understand the concept of transaction management [K1, K2] Coli Ability of students to compare different types of NoSQL Databases and RDBMS with different N databases [K4] Coli 3 3 3 3 1 1 1 1 2 Coli 3 3 3 3 1 1 1 2 Coli 3 3 3 3 1 1 1 2 Coli 3 3 3 3 1 1 1 2 Coli 3 3 3 3 1 1 1 2 Coli 3 3 3 3 3 1 1 1 2 Coli 3 3 3 3 3 1 1 1 2 Coli 3 3 3 3 3 1 1 1 - 2 Coli 3 3 3 3 3 1 1 1 - 2 Coli 3 3 3 3 3 1 1 1 - 2 Coli 3 3 3 3 3 1 1 1 - 2 Coli 3 3 3 3 3 1 1 1 - 2 Coli 3 3 3 3 3 1 1 1 - 2 Coli 3 3 3 3 3 1 1 1 - 2 Coli 3 3 3 3 3 1 1 1 - 2 Coli 3 3 3 3 3 1 1 1 - 2 Coli 3 3 3 3 3 1 1 1 - 2 Coli 3 3 3 3 3 1 1 1 - 2 Coli 3 3 3 3 3 3 1 1 1 - 2 Coli 3 3 3 3 3 3 1 1 1 - 2 Coli 3 3 3 3 3 3 1 1 1 - 2 Coli 3 3 3 3 3 3 1 1 1 - 2 Coli 3 3 3 3 3 3 1 1 1 - 2 Coli 3 3 3 3 3 3 1 1 1 - 2 Coli 3 3 3 3 3 3 1 1 1 - 2 Coli 4 - 2<!--</td--><td></td><td></td><td>y norms</td><td>niversit</td><td>As per U</td><td>farks : A</td><td>imum N</td><td>RS: Max</td><td>SETTEF</td><td>APER S</td><td>NS TO P</td><td>JCTION</td><td>INSTRU</td>			y norms	niversit	As per U	farks : A	imum N	RS: Max	SETTEF	APER S	NS TO P	JCTION	INSTRU
answer type questions. ➤ Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit have two questions. However, students may be asked to attempt only 1 question from each unit. ➤ The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/lev questions to be asked should be at the level of the prescribed textbooks. ➤ The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required Course Outcomes [Bloom's Knowledge Level (KL)]: CO1: Ability of students to understand the basic concepts of Database Management System [K2] CO2: Ability of students to understand the concept of transaction management [K1, K2] CO3: Ability of students to compare different types of NoSQL Databases and RDBMS with different N databases [K4] CO/PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 P CO2 2 3 3 1 - - 1 2 CO4 3 3 3 1 - - 2 2 CO4 3 3 3 1 1 - - 1 2 CO4 3 3 3 1 1					n paper	n questio	aminatio	d term ex	in the end	juestions	uld be 9 c	here sho	▶]
have two questions. However, students may be asked to attempt only 1 question from each unit. ▶ The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/lev questions to be asked should be at the level of the prescribed textbooks. ▶ The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required Course Outcomes [Bloom's Knowledge Level (KL)]: C01: Ability of students to understand the basic concepts of Database Management System [K2] C02: Ability of students to understand the concept of transaction management [K1, K2] C03: Ability of students to compare different types of NoSQL Databases and RDBMS with different N databases [K4] C07PO PO01 PO02 PO03 PO05 PO06 PO07 PO08 PO09 PO11 P C02 2 3 3 1 - - 1 1 2	e or shor	e objectiv	hould hav	uestion s	us. This q	ire syllab	er the ent	and cov	mpulsory			-	
 The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/lev questions to be asked should be at the level of the prescribed textbooks. The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required Course Outcomes [Bloom's Knowledge Level (KL)]: CO1: Ability of students to understand the basic concepts of Database Management System [K2] CO2: Ability of students to the design database schemas and ER Model [K6] CO3: Ability of students to understand the concept of transaction management [K1, K2] CO4: Ability of students to compare different types of NoSQL Databases and RDBMS with different N databases [K4] CO/PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 P Adabases [K4] CO702 2 3 3 3 1 1 1 1 2 CO2 2 3 3 3 3 1 1 1 2 2 1 2 CO4 3 3 3 3 1 1 1 2 2 2 2 CO4 3 3 3 3 1 1 1 2 2 2 2 2 2 2 3 2 3 3 3 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	t should	-	-	-								-	
questions to be asked should be at the level of the prescribed textbooks. ➤ The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required Course Outcomes [Bloom's Knowledge Level (KL)]: C01: Ability of students to understand the basic concepts of Database Management System [K2] C02: Ability of students to understand the concept of transaction management [K1, K2] C03: Ability of students to compare different types of NoSQL Databases and RDBMS with different P databases [K4] C0/PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 P C01 3 3 3 1 - - - 1 1 C02 2 3 3 1 1 - - 1 1 1 2 2 2 2 2 2 3 3 1 1 - - 1 1 2 2 2 2 2 2 2 3 3 1 1 - - 2 2 2 3 3 1 1 - - 2 2 2						-		•			-		
 ➤ The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required Course Outcomes [Bloom's Knowledge Level (KL)]: Co1: Ability of students to understand the basic concepts of Database Management System [K2] Co2: Ability of students to understand the concept of transaction management [K1, K2] Co3: Ability of students to compare different types of NoSQL Databases and RDBMS with different N databases [K4] CO/PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 P Co1 3 3 3 3 1 1 - - - - 1 1 Co2 2 3 3 3 1 1 - - - - 2 Co3 3 3 3 1 1 1 - - - - 2 Co4 3 3 3 3 1 1 1 - - - - 2 Co4 3 3 3 3 1 1 1 1 - - - 2 Co4 3 3 3 3 1 1 1 1 - - - 2 Co4 3 3 3 3 1 1 1 1 - - - - 2 Co4 3 3 3 3 1 1 1 1 - - - - 2 	vel of th	tandard/ le	per. The s	ourse/pap		-		-	-			-	
Course Outcomes [Bloom's Knowledge Level (KL)]: Course Outcomes [Bloom's Knowledge Level (KL)]: C01: Ability of students to understand the basic concepts of Database Management System [K2] C02: Ability of students to the design database schemas and ER Model [K6] C03: Ability of students to understand the concept of transaction management [K1, K2] C04: Ability of students to compare different types of NoSQL Databases and RDBMS with different N databases [K4] C0/PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 P C01 3 3 3 1 - - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - 2 2 2 3 3 <td< td=""><td></td><td>d</td><td>if roquiro</td><td>manified</td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		d	if roquiro	manified			•						
CO1: Ability of students to understand the basic concepts of Database Management System [K2] CO2: Ability of students to the design database schemas and ER Model [K6] CO3: Ability of students to understand the concept of transaction management [K1, K2] CO4: Ability of students to compare different types of NoSQL Databases and RDBMS with different N databases [K4] CO/PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 P CO 3 3 3 1 - - - 1 I		1	II lequile	specified	s may be s	ata-tables		e				•	
CO/PO PO01 PO02 PO03 PO04 PO05 PO06 PO07 PO08 PO09 PO10 PO11 P CO1 3 3 3 3 1 - - - - 1 1 CO2 2 3 3 3 1 1 - - - 1 1 CO2 2 3 3 3 1 1 - - - 1 1 CO3 2 3 3 3 1 1 - - - 2 1 CO4 3 3 3 3 1 1 - - - 2 1 Course Content Viat is Database System, Purpose of database system, View of data, Relational databases, Database Architecture, Data Models, Transaction Management. View of data, Relational databases, Database	NoSQL	different		ent [K1 ,	nanagem	saction n	t of tran	e concep	stand th	to under	students students	bility of bility of	C O3: A C O4: A
CO2 2 3 3 1 1 - - - 1 CO3 2 3 3 3 1 1 - - - 1 CO3 2 3 3 3 1 1 - - - 1 CO4 3 3 3 3 1 1 - - 2 2 Course Content N Unit I What is Database System, Purpose of database system, View of data, Relational databases, Database Architecture, Data Models, Transaction Management. New of data, Relational databases, Database Unit II Unit II	PO12	PO11	PO10	PO09	PO08	PO07	PO06	PO05	PO04	PO03			
CO3 2 3 3 3 1 1 2 CO4 3 3 3 3 1 1 2 Course Content N Unit I What is Database System, Purpose of database system, View of data, Relational databases, Database Architecture, Data Models, Transaction Management.	2	1	-	-	-	-	-	1	3	3	3	3	C O 1
CO4 3 3 3 3 1 1 2 Course Content Curse Content Unit I What is Database System, Purpose of database system, View of data, Relational databases, Database Architecture, Data Models, Transaction Management. Unit II	2	1	-	-	-	-	1	1	3	3	3	2	C O2
Course Content N Unit I N What is Database System, Purpose of database system, View of data, Relational databases, Database Architecture, Data Models, Transaction Management. Unit II	3	2	-	-	-	-	1	1	3	3	3	2	C O 3
Course Content le Unit I What is Database System, Purpose of database system, View of data, Relational databases, Database Architecture, Data Models, Transaction Management. Unit II	3	2	-	-	-	-	1	1	3	3	3	3	C O 4
What is Database System, Purpose of database system, View of data, Relational databases, Database Architecture, Data Models, Transaction Management.	No of ectures										[Content	Course
	[7]	atabase	abases, D	onal data	a, Relati	ew of dat		•		-	•		What is
Database design and ER Model: Overview, constraint, ERD Issues weak entity sets, Codd rules,								-					
.			sets Cod	entity s	ies weak						and ER	1 •	
								on	troducti	Τ.,		0	U nit II Database
Normalization(1NF,2NF,3NF,BCNF) Relational Algebra: Introduction, selection and projection, set operation, joins division, Grouping and Ungrouping, Relational Comparison.	[11]	nguage,	La	0							schemas,	.1 5	J nit II Database elationa
	[11]	nguage,	La	ection an	tion, sele	Introduc	Algebra:	ational A	NF) Rel	3NF,BC	NF,2NF,	l s zation(1	U nit II Database elationa Normali
Fransaction Management: ACID properties, Serializability and concurrency control, Lock based concurrency control (2PL, Deadlock) Time Stamping Methods, Database Recovery Management	[11]	nguage,	La	ection an	tion, sele	Introduc	Algebra:	ational A	NF) Rel	3NF,BC	NF,2NF,	l s zation(1	U nit II Database relationa Normali

Approved by BoS of USAR : 15/06/2023, Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Approved by AC sub-committee : 04/07/2023

Unit IV Overview and History of NoSQL Databases, Definition of the Four Types of NoSQL Database, The Value of Relational Databases, Getting at Persistent Data, Concurrency, Integration, The Emergence of NoSQL.	
Text Books:	
[T1] Sadalage, P. J., & Fowler, M. (2013). NoSQL distilled: a brief guide to the emerging world of polyglot persistence. Pearson Education.	of
[T2] Silberschatz, A., Korth, H. F., & Sudarshan, S. (2002). Database system concepts (Vol. 5). N York: McGraw-Hill.	Jew
[T3] Elmasri, R., Navathe, S. B., Elmasri, R., & Navathe, S. B. (2000). Fundamentals of Database	e Systems
Reference Books:	
[R1] Date, C. J. (2004). An Introduction to Database Systems. 8-th ed.	
[R2] Ullman, J. D. (1983). Principles of database systems. Galgotia publications.	

[R3] Bipin C. Desai. (1990). An Introduction to Database Systems. West Publishing Co.

Paper	Code: A	ARO 38	6							L	T/P	Credits
Subjec	t: Intro	duction	to Rob	ootics						3	0	3
Marking Scheme: Teachers Continuous Evaluation: As per university examination norms from time to time. End Term Theory Examination: As per university examination norms from time to time.INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: 75												·
> There should be 9 questions in the end term examination question paper.												
> Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective											ive or short	
answer type questions. It should be of 15 marks.												
> Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every units $\frac{1}{2}$											unit should	
			Howeve	er, stude	nts may	be asked	to attem	pt only 1	question	from eac	ch unit. Ea	ch question
	uld be 15									-	,	
> The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of												level of the
questions to be asked should be at the level of the prescribed textbooks.												
The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required.												
Course Outcomes[Bloom's Knowledge Level (KL)]: Ability of students to implement the mechanisms of robot along with its grippers. Furthern										rmore to		
CO1				-			resentati		0	its grippe	is. Future	
CO2	Ability [K1,K		idents t	o utiliz	ze the	different	ial moti	on and	velociti	es of ro	bot using	jacobian.
CO3		7 of stud d. [K1,ŀ		use the	dynami	ic analys	is of fore	ces using	g Lagran	gian and	Newtonia	n
CO4	Ability	of stud	ents to	implem	ent the	online a	nd offlin	e progra	mming o	of robots.	[K3,K4]	_
CO/ PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	3	3	3	2	1	-	1	3	1	2
CO2	3	3	3	3	3	1	1	-	2	3	1	2
CO3	3	3	3	3	3	1	1	-	3	3	2	3
CO4	3	3	3	3	3	3	2	-	3	3	2	3
Cours	e Conte	ent										No of lectures
	mental				0.						cs, Robo peatability	

and accuracy, Degrees of freedom of robots, Robot configurations and concept of workspace, Mechanisms and transmission	
End effectors: Mechanical and other types of grippers, Tools as end effectors, Robot and effector	
interface, Gripper selection and design.	
Sensors and actuators used in robotics: Pneumatic, hydraulic and electrical actuators,	
applications of robots, specifications of different industrial robots	
Unit II	
Kinematics of Robots: Transformation Matrices, Inverse transformation matrices, Forward and	
Inverse kinematic equation for position and orientation, Denavit-Hartenberg representation of	[8]
robot, inverse kinematic solution for articulated robot, Numericals.	[0]
Differential Motions and velocities: Jacobian, Differential motions of a frame, Differential	
motion between frames, Calculation of the Jacobian, Inverse Jacobian, Numericals.	
Unit III	
Dynamic analysis of Force: Lagrangian and Newtonian mechanics, Dynamic equations form	
multiple –DOF Robots, Static force analysis of Robots, Transformation of forces and moments	[8]
between coordinate frames, Numericals.	
Trajectory Planning: Basics of Trajectory planning, Joint space trajectory planning, Cartesian Space trajectories, Numericals.	
Unit IV	
Debat Dragramming languages & gratema Introduction the three levels of rehet programming	
Robot Programming languages & systems : Introduction, the three levels of robot programming, requirements of a robot programming language problems peculiar to robot programming	
requirements of a robot programming language, problems peculiar to robot programming	
requirements of a robot programming language, problems peculiar to robot programming languages.	[8]
requirements of a robot programming language, problems peculiar to robot programming languages. Off-line programming systems: Introduction, central issues in on-line and offline programming,	[8]
requirements of a robot programming language, problems peculiar to robot programming languages. Off-line programming systems: Introduction, central issues in on-line and offline programming, Programming examples.	[8]
requirements of a robot programming language, problems peculiar to robot programming languages. Off-line programming systems: Introduction, central issues in on-line and offline programming,	[8]
requirements of a robot programming language, problems peculiar to robot programming languages. Off-line programming systems: Introduction, central issues in on-line and offline programming, Programming examples. Application of robots: Typical applications of robots in material transfer, machine	[8]
requirements of a robot programming language, problems peculiar to robot programming languages. Off-line programming systems: Introduction, central issues in on-line and offline programming, Programming examples. Application of robots: Typical applications of robots in material transfer, machine loading/unloading; processing operations; assembly and inspection.	[8]
 requirements of a robot programming language, problems peculiar to robot programming languages. Off-line programming systems: Introduction, central issues in on-line and offline programming, Programming examples. Application of robots: Typical applications of robots in material transfer, machine loading/unloading; processing operations; assembly and inspection. Text Books: [T1] Saha, S. K. (2014). Introduction to robotics. Tata McGraw-Hill Education. [T2] Mittal, R. K., & Nagrath, I. J. (2003). Robotics and control. Tata McGraw-Hill. 	
 requirements of a robot programming language, problems peculiar to robot programming languages. Off-line programming systems: Introduction, central issues in on-line and offline programming, Programming examples. Application of robots: Typical applications of robots in material transfer, machine loading/unloading; processing operations; assembly and inspection. Text Books: [T1] Saha, S. K. (2014). Introduction to robotics. Tata McGraw-Hill Education. [T2] Mittal, R. K., & Nagrath, I. J. (2003). Robotics and control. Tata McGraw-Hill. [T3] Fu, K. S., Gonzalez, R., & Lee, C. G. (1987). Robotics: Control Sensing. Vis. Tata McG 	
 requirements of a robot programming language, problems peculiar to robot programming languages. Off-line programming systems: Introduction, central issues in on-line and offline programming, Programming examples. Application of robots: Typical applications of robots in material transfer, machine loading/unloading; processing operations; assembly and inspection. Text Books: [T1] Saha, S. K. (2014). Introduction to robotics. Tata McGraw-Hill Education. [T2] Mittal, R. K., & Nagrath, I. J. (2003). Robotics and control. Tata McGraw-Hill. [T3] Fu, K. S., Gonzalez, R., & Lee, C. G. (1987). Robotics: Control Sensing. Vis. Tata McGradina. 	raw-Hill
 requirements of a robot programming language, problems peculiar to robot programming languages. Off-line programming systems: Introduction, central issues in on-line and offline programming, Programming examples. Application of robots: Typical applications of robots in material transfer, machine loading/unloading; processing operations; assembly and inspection. Text Books: [T1] Saha, S. K. (2014). Introduction to robotics. Tata McGraw-Hill Education. [T2] Mittal, R. K., & Nagrath, I. J. (2003). Robotics and control. Tata McGraw-Hill. [T3] Fu, K. S., Gonzalez, R., & Lee, C. G. (1987). Robotics: Control Sensing. Vis. Tata McG Education. [T4] Niku, S. B. (2001). Introduction to robotics: analysis, systems, applications (Vol. 7). New 	raw-Hill
 requirements of a robot programming language, problems peculiar to robot programming languages. Off-line programming systems: Introduction, central issues in on-line and offline programming, Programming examples. Application of robots: Typical applications of robots in material transfer, machine loading/unloading; processing operations; assembly and inspection. Text Books: [T1] Saha, S. K. (2014). Introduction to robotics. Tata McGraw-Hill Education. [T2] Mittal, R. K., & Nagrath, I. J. (2003). Robotics and control. Tata McGraw-Hill. [T3] Fu, K. S., Gonzalez, R., & Lee, C. G. (1987). Robotics: Control Sensing. Vis. Tata McG Education. [T4] Niku, S. B. (2001). Introduction to robotics: analysis, systems, applications (Vol. 7). New Prentice hall. 	raw-Hill
 requirements of a robot programming language, problems peculiar to robot programming languages. Off-line programming systems: Introduction, central issues in on-line and offline programming, Programming examples. Application of robots: Typical applications of robots in material transfer, machine loading/unloading; processing operations; assembly and inspection. Text Books: [T1] Saha, S. K. (2014). Introduction to robotics. Tata McGraw-Hill Education. [T2] Mittal, R. K., & Nagrath, I. J. (2003). Robotics and control. Tata McGraw-Hill. [T3] Fu, K. S., Gonzalez, R., & Lee, C. G. (1987). Robotics: Control Sensing. Vis. Tata McG Education. [T4] Niku, S. B. (2001). Introduction to robotics: analysis, systems, applications (Vol. 7). New Prentice hall. Reference Books: 	raw-Hill
 requirements of a robot programming language, problems peculiar to robot programming languages. Off-line programming systems: Introduction, central issues in on-line and offline programming, Programming examples. Application of robots: Typical applications of robots in material transfer, machine loading/unloading; processing operations; assembly and inspection. Text Books: [T1] Saha, S. K. (2014). Introduction to robotics. Tata McGraw-Hill Education. [T2] Mittal, R. K., & Nagrath, I. J. (2003). Robotics and control. Tata McGraw-Hill. [T3] Fu, K. S., Gonzalez, R., & Lee, C. G. (1987). Robotics: Control Sensing. Vis. Tata McG Education. [T4] Niku, S. B. (2001). Introduction to robotics: analysis, systems, applications (Vol. 7). New Prentice hall. Reference Books: [R1] Spong, M. W., & Vidyasagar, M. (2008). Robot dynamics and control. John Wiley & Sons. 	raw-Hill v Jersey:
 requirements of a robot programming language, problems peculiar to robot programming languages. Off-line programming systems: Introduction, central issues in on-line and offline programming, Programming examples. Application of robots: Typical applications of robots in material transfer, machine loading/unloading; processing operations; assembly and inspection. Text Books: [T1] Saha, S. K. (2014). Introduction to robotics. Tata McGraw-Hill Education. [T2] Mittal, R. K., & Nagrath, I. J. (2003). Robotics and control. Tata McGraw-Hill. [T3] Fu, K. S., Gonzalez, R., & Lee, C. G. (1987). Robotics: Control Sensing. Vis. Tata McG Education. [T4] Niku, S. B. (2001). Introduction to robotics: analysis, systems, applications (Vol. 7). New Prentice hall. Reference Books: 	raw-Hill v Jersey:

[R3] Bhaumik, A. (2018). From AI to robotics: mobile, social, and sentient robots. CRC Press.

Paper Code: ARO 471 T/P L Credits **Subject: Software Metrics** 3 0 3 **Marking Scheme:** Teachers Continuous Evaluation: As per university examination norms from time to time. End Term Theory Examination: As per university examination norms from time to time. **INSTRUCTIONS TO PAPER SETTERS: Maximum Marks : As per University norms** > There should be 9 questions in the end term examination question paper > Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. > Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, students may be asked to attempt only 1 question from each unit. > The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks. > The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required **Course Outcomes [Bloom's Knowledge Level (KL)]: CO1:** Understand various fundamentals of measurement and software metrics **CO2** Apply frame work and analysis techniques for software measurement. **CO3:** Apply internal and external attributes of software product for effort estimation. **CO4:** Apply reliability models for predicting software quality CO/PO **PO01 PO02** PO03 **PO04 PO05 PO06** PO07 **PO08 PO09 PO10 PO11 PO12** 3 3 1 1 1 1 1 3 1 **CO1** 2 3 2 2 2 3 2 **CO2** 3 3 3 1 3 3 3 3 2 3 2 3 2 3 3 **CO3** 3 3 3 3 3 3 3 3 3 3 3 **CO4** No of **Course Content** lectures Unit I Fundamentals of Measurement and Experimentation: Measurement: What Is It and Why Do It?: Measurement In Software Engineering, Scope Of Software Metrics. The Basics of Measurement: The Representational Theory Of Measurement, Measurement And Models, Measurement Scales And [10] Scale Types, Meaningfulness In Measurement. A goal based framework for software measurement: Classifying Software Measures, Processes And Products, Determining What To Measure, Framework Application, Cost And Effort Estimation. Unit II Empirical Investigation: Principles Of Investigation, Planning Phase For Performing Experiments, [10] Planning Case Studies As Quasi-Experiments, Confirming Theories And Conventional Wisdom, Exploring Relationships, Evaluating The Accuracy Of Prediction Models, Validating Measures .

Planning Formal Experiments Software Metrics Data Collection: Defining Good Data, Data Collection Forms, Data Collection Tools, Reliability Of Data Collection Procedures.	
Unit III	
Analyzing Software Measurement Data: Analyzing the results of experiments, Simple Analysis Techniques, More advance methods, Statistical Tests Measuring Internal Product Attributes: Size, Properties Of Software Size, Code Size, Design Size, Requirements Analysis And Specification Size, Functional Size Measures And Estimators, Applications Of Size Measures, Problem, Solution Size, Computational Complexity Aspects Of Structural Measures, Control Flow Structure Of Program Units, Design-Level Attributes, Object-Oriented Structural Attributes And Measures.	[10]
Unit IV Measuring external product attributes: Modeling Software Quality, Measuring Aspects of Quality, Usability, Maintainability And Security Measures Making process prediction: Growth Predictions, Implications for process prediction Case Study: Empirical research in software engineering.	[10]
Text Books: [T1] Software Metrics A Rigorous and Practical Approach, Norman Fenton, James Bieman, Third Edition, 2014	d
Reference Books:	
 [R1] Software Metrics A Rigorous and Practical Approach By Norman E. Fenton, Shari Lawrence Pfleeger 1997 [R2] Metrics and Models in Software Quality Engineering By Stephen H. Kan 2003 [R3] Measuring the Software Process Statistical Process Control for Software Process Improvemen William A. Florac, Anita D. Carleton 1999 [R4] Practical Software Metrics for Project Management and Process Improvement By Robert B. C 1992. 	nt By

Paper	Code: A	RO 473	}							L	T/P	Credits
Subjec	t: Intro	duction	to Elect	ric Veh	icles					3	0	3
	ng Sche				_	_			_	_		
Teachers Continuous Evaluation: As per university examination norms from time to time. End Term Theory Examination: As per university examination norms from time to time.												
		-					m Mark			to time.		
							question					
 Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective 											e or short	
answer type questions. It should be of 15 marks.											• • • •	
	• •	•					onsist of f	four units	as per the	e svllabus.	Every u	nit should
^		-							•	•	•	n question
	uld be 15		,		j		I .	5 1				1
> The	question	is are to b	be framed	l keeping	g in view	the learn	ning outco	omes of c	ourse/pap	er. The sta	andard/ le	evel of the
que	stions to	be asked	should b	e at the l	evel of t	he prescr	ibed textl	books.				
> The	requiren	nent of (s	cientific)	calculat	tors/ log-	tables/ da	ata-tables	may be s	pecified i	f required		
Cours	e Outco	mes [Bl	oom's K	Knowled	lge Lev	el (KL)]	•					
CO1	Course Outcomes [Bloom's Knowledge Level (KL)]:CO1Ability of students to calculate the capacity requirement of motor for electric vehicle. [K2, K3]											
CO2	Ability	of studer	nts to und	erstand	the differ	rent elect	ric vehicl	e architec	tures. [K]	1, K2]		
CO3	Ability	of stude	ents to se	elect and	d compa	re the di	ifferent e	energy sto	orage cel	l availabl	e. [K2,]	K3]
CO4	Ability K3, K 4		ents to d	esign a	nd optin	nize the	different	chargin	g stations	s for elec	tric vehi	cle. [K2,
CO/ PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	2	2	2	2	1	-	-	-	2	3
CO2	3	2	2	2	2	2	1	-	-	-	2	3
CO3	3	3	3	3	3	2	1	-	-	-	3	3
CO4	3	3	2	2	3	2	2	-	-	-	3	3
Course Content										No of lectures		
Unit I												
Introduction: Electric Vehicle History, Components of Electric Vehicle, Comparison with												
			-			•				Engine: I	Benefits	
	-								rminolog	•	• ,	[8]
	-							-		ing Res		
	ting the Torque	•			-	ne Acce	ieration .	Force, F	maing th	e Total 7	ractive	
Enon,	rorque	require	u on me									

Unit II

Electric Vehicle Architecture Design: Types of Electric Vehicle and components, Electrical protection and system requirement, Photovoltaic solar based EV design, Battery Electric vehicle (BEV), Hybrid electric vehicle (HEV), Plug-in hybrid vehicle (PHEV), Fuel cell electric vehicle (FCEV), Electrification Level of EV, Comparison of fuel vs Electric and solar power, Solar Power operated Electric vehicles Electric Drive and controller: Types of Motors, Selection and sizing of Motor, RPM and Torque calculation of motor, Motor Controllers, Component sizing, Physical locations, Mechanical connection of motor, Electrical connection of motor	[8]
Unit III Energy Storage Solutions (ESS): Cell Types (Lead Acid/Li/NiMH), Battery charging and	
discharging calculation, Cell Selection and sizing, Battery lay outing design, Battery Pack Configuration, Battery Pack Construction, Battery selection criteria. Control Unit: Function of CU, Development Process, Software, Hardware, Data Management,	[8]
GUI/HMI	
 Unit IV Electric Vehicles charging station: Type of Charging station, Selection and Sizing of charging station, Components of charging station, Single line diagram of charging station Indian and Global Scenario: Technology Scenario, Market Scenario, Policies and Regulations, Payback and commercial model, Payback and commercial model, policies in India. 	[8]
Text Books: [T1] Electric Vehicle Technology B P Ganthia, A S Singholi, Scientific International Publication House.	L
[T2] Electric Vehicle Technology by S R Pawar.	
Reference Books: [R1] Electric and Hybrid Vehicles A K Babu Khana Publication [R2] Electric Vehicles: The Automobiles of the Future by Otto Bischof, Ted Tanaka.	

I

T/P Paper Code: ARO 475 L Credits **Subject: Web Development** 3 0 3 **Marking Scheme:** Teachers Continuous Evaluation: As per university examination norms from time to time. End Term Theory Examination: As per university examination norms from time to time. **INSTRUCTIONS TO PAPER SETTERS: Maximum Marks : As per University norms** > There should be 9 questions in the end term examination question paper > Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. > Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, students may be asked to attempt only 1 question from each unit. > The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks. > The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required **Course Outcomes [Bloom's Knowledge Level (KL)]: CO1:** Ability of students to understand the basics of web development and client side scripting. **[K2] CO2:** Ability of students to analyze, design and implement dynamic web pages using a combination of client side and server side scripting. [K3] CO3: Ability of students to design and implement a full scale three tier architecture web application. [K3] **CO4:** Ability of students to analyze requirements and create real time web applications using the latest technology and architectures. [K3, K4] PO01 PO02 **PO03 PO04** PO05 PO09 CO/PO **PO06** PO07 **PO08 PO10** PO11 PO12 **CO1** 2 1 3 2 1 3 _ _ _ _ _ **CO2** 3 3 -3 3 3 3 -1 _ _ _ 3 3 3 **CO3** 3 3 3 _ 1 _ _ _ **CO4** 3 3 3 3 3 3 2 3 _ _

Course Content

No of lectures

Unit I

Web Basics and Overview: Introduction to web applications, HTML, Client Side Scripting Vs Server Side Scripting, Web Servers : Local Servers and Remote Servers, Installing Web servers, Internet Information Server (IIS), XAMPP, and NGINX web servers. Static website vs Dynamic website development.

Client side Scripting: Introduction to JavaScript: JavaScript language – declaring variables, scope of variables functions, event handlers (on click, on submit etc.), Document Object Model, Form validations. Simple AJAX applications.

[8]

Unit II	
 Server Side Scripting: Introduction to PHP: Declaring variables, data types, arrays, strings, operations, expressions, control structures, functions, Reading data from web form controls like Text Boxes, radio buttons, lists etc. Debugging common problems, Warnings and errors, Debugging and troubleshooting. Building Web Pages with PHP: Links and URLs, Using GET and POST values, Encoding for HTML, Including and requiring files, Modifying headers, Page redirection, Output buffering, Working with Forms and Form Data, Building forms, Detecting form submissions, Single-page form processing, Validating form values, Problems with validation logic, Displaying validation errors, Custom validation functions, Single-page form with validations. 	[10]
Unit III Session Management: Working with cookies, Setting cookie values, Reading cookie values, Unsetting cookie values, Working with sessions and its role in developing dynamic web pages. Database Programming using PHP: MySQL Basics, MySQL introduction, Creating a database, Creating a database table, CRUD in MySQL, Populating a MySQL database, Relational database tables, Populating the relational table, Using PHP to Access MySQL, Database APIs in PHP, Connecting to MySQL with PHP, Retrieving data from MySQL, Working with retrieved data, Creating records with PHP, Updating and deleting records with PHP, Introducing prepared statements. Stored Procedure and its interaction with PHP.	[10]
Unit IV PHP and its applications through case study: Introduction to web services, SOAP and REST based web services, parsing and creating XML with PHP, parsing and creating JSON with PHP, Creating PHP web services. A Case study of a test web application through PHP and Stored Procedure and its interaction with PHP.	[8]
Text Books: [T1] Programming PHP. Rasmus Lerdorf, Kevin Tatroe. (O'Reilly, ISBN 1565926102). [T2] PHP: The Complete Reference Steven Holzner TataMcGraw-Hill [T3] PHP and MySQL Web Development, Luke Welling, 5th edition, Pearson	
 Reference Books: [R1] Programming world wide web-Sebesta, Pearson Education,2007 [R2] Internet and World Wide Web – How to program by Dietel and Nieto PHI/ Pearson Education [R2] An Introduction to WEB Design and Programming –Wang-Thomson [R3] PHP, MySQL, and JavaScript: A Step-By-Step Guide to Creating Dynamic Websites by Rob O'Reilly Media; 1 edition [R4] Core PHP Programming. Leon Atkinson (Prentice Hall, ISBN 0130463469). 	

Paper	Code: A	ARO 47	7								L	T/P	Credits
Subjec	et: Mod	ern Mai	nufactur	ing Pro	ocesses						3	0	3
Marking Scheme: Teachers Continuous Evaluation: As per university examination norms from time to time. End Term Theory Examination: As per university examination norms from time to time.													
INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: 75													
> There should be 9 questions in the end term examination question paper.													
≫	> Question No. 1 should be compulsory and cover the entire syllabus. This question should have object												ective or
	short answer type questions. It should be of 15 marks.												
≫	Apart fro	om Ques	tion No.	1, the re	st of the	e paper s	hall con	sist of fo	ur units a	s per tl	ne syll	abus. Ev	very unit
			questions e 15 mar		er, stude	ents may	be aske	d to attem	pt only 1	questio	n fron	n each u	nit. Each
≫	The ques	stions are	to be fra	med kee	ping in v	view the	learning	outcomes	of course	e/paper	. The s	standard	/ level of
	the quest	tions to b	e asked s	hould be	e at the l	evel of th	ne presci	ibed textl	ooks.				
≫	The requ	irement	of (scient	ific) calo	culators/	log-tabl	es/ data-	tables ma	y be speci	ified if	requir	ed.	
Cours	se Outco	omes[Bl	oom's K	Inowled	lge Lev	el (KL)]:						
CO1		y of stud sses. [K		understa	and the	basic kn	owledg	e and me	thodolog	y of va	arious	manufa	acturing
CO2		•	udents ag process		-		trast th	e advan	tages an	d lim	itation	ns of c	lifferent
CO3		-	lents to s age & m		-		-	nique wit	h the aim	of cos	t redu	iction, r	educing
CO4			dents to chining c						ting the	produ	ct qua	ality in	various
CO/ PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO1	0 1	2011	PO12
CO1	2	2	2	2	3	2	-	-	-	-		2	3
CO2	3	3	3	2	3	2	-	I	-	_		2	3
CO3	3	3	3	2	3	2	-	-	-	-		2	3
CO4	3	2	3	2	3	2	-	-	-	-		2	3
Course Content										No of lectures			
Proces	uction: 1 ss princ ations o	iple, Ma	terial re	moval	mechan	ism, Pa	rametri	c analysi	anced ma s, proces ectro dis	ss cap	abiliti	es and	[9]

Unit II

Introduction: Process principle, Material removal mechanism, Parametric analysis, process capabilities and applications of processes such as Abrasive jet machining (AJM), Water jet machining (WJM), Abrasive Water jet machining (AWJM), Laser beam machining, Electron beam machining (EBM), Ion beam machining (IBM). Electro-chemical machining (ECM).	[9]
Unit III	
Introduction: Process principle, Parametric analysis, process capabilities and applications of	[9]
processes such as Friction stir welding (FSW), Electron beam welding (EBW), Laser beam	[9]
welding, (LBW), Ultrasonic welding (USW).	
Unit IV	
Introduction: Working principle, process performance, advantages and limitations and	
applications hybrid process such as EC grinding and chemical machining. Details of high energy	[9]
rate forming (HERF) process, Electro-magnetic forming, explosive forming, Electro-hydraulic	
forming, Additive Manufacturing.	
Text Books:	
[T1] Advanced machining process, Dr. V. K. Jain	
[T2] Non-traditional methods of manufacturing, Shah & Pandey	
Reference Books:	
[R1] Manufacturing Processes for Engineering Materials - Kalpakjian S and Steven R Schmid Pe	earson
Publ, 5th Edn.	
[R2] Parmer R.S., Welding Engineering and Technology, Khanna Publishers, 2002,	
ISBN:9788174090287	

1 1

Paper (Code: AF	RO 479								L	T/P	Credits
Subject	: Person	al Finan	ice							3	0	3
Teacher	g Schem s Continu m Theor	uous Eva		-	-	•						
INSTR	UCTION	NS TO P	APER S	SETTEF	RS: Max	imum N	Iarks: A	s per U	niversity	v norms		
> (2 3 4 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Answer typ Apart from have two o	No. 1 sho pe question questions ions are to to be aske rement of es [Bloo nd the m ng. [K1 , he conce the conce	uld be co ons. on No. 1, 1 . Howeve o be fram ed should (scientifi m's Kno eaning a K2] ept of investor po	mpulsory the rest of er, student ed keepin be at the ic) calcula owledge and relev vestment ersonal ta	f the pape f the pape ts may be ng in view level of ators/ log Level (I ance of f planning ax plann	er the enti- er shall co e asked to v the learn the prescri- tables/ d KL)]: financial g and its ing. [K3	ponsist of f attempt of ning outco tibed text ata-tables planning methods]	ius. This q four units only 1 que omes of c books. g may be s g, time va g, time va s. [K2]	as per the estion fro ourse/paj specified alue of n	e syllabus m each u per. The s if require	. Every u nit. tandard/ d	ve or short nit should level of the of
CO/ PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	2	2	2	2	3	2	-	-	-	-	2	3
CO2	3	3	3	2	3	2	-	-	-	-	2	3
CO3	3	3	3	2	3	2	-	-	-	-	2	3
CO4	3	2	3	2	3	2	-	-	-	-	2	3
Course	Content											No of lectures
planning savings, digital v	ction to g, person benefits vallets, so urd clonir	al finand of savin ecurity a	ce/loans, igs, man ind preca	educati agement autions a	on loan, of spen	car loan ding & f	n & hon inancial	ne loan s disciplin	schemes. e, Net b	Introdu anking a	ction of nd UPI,	
	ent plar various											[8]

Approved by BoS of USAR : 15/06/2023, Approved Applicable from Batch Admitted in Academic Session 2021-22 Onwards _____

formation. Real estate, financial derivatives & Commodity market in India. Mutual fund schemes including SIP.						
Unit III: Personal Tax Planning: Tax Structure in India for personal taxation, Steps of Personal tax	[12]					
planning, Exemptions and deductions for individuals, tax avoidance versus tax evasion.	[12]					
Unit IV:						
Insurance Planning and Retirement Planning: Need for Protection planning. Risk of mortality, health, disability and property. Importance of Insurance: life and non-life insurance schemes. Retirement Planning Goals, Process of retirement planning, Pension plans available in India, Reverse mortgage, New Pension Scheme.	[12]					
Text Books:						
 [T1] Introduction to Financial Planning (4th Edition 2017) — Indian Institute of Banking & Finan [T2] Sinha, Madhu. Financial Planning. A Ready Reckoner July 2017, McGraw Hill. 	ce.					
Reference Books:						
[R1] Halan, Monika. Lets Talk Money: You've Worked Hard for It, Now Make It Work for You Ju						
Harper Business.						
[R2] Pandit, Amar The Only Financial Planning Book that You Will Ever Need, Network 18 Publications Ltd.						

Paper	Code: A	ARO 48 2	1							Ι	L T/P	Credits
Subjec	t: Auto	motive]	Engine	ering						3	3 0	3
Teache		inuous E		•		•	minatio					
		•		-		sity exan	nination					
		DNS TO								As per u	niversity	v norms
> Th	here show	uld be 9 c	luestions	in the er	nd term e	xaminati	on questi	on paper.				
≫ Qu	uestion I	No. 1 sho	uld be co	ompulsor	y and cov	ver the en	tire syllal	ous. This	question	should h	ave object	ive or short
	• •	pe questio										
		-							•	•	•	unit should
		•		er, stude	nts may l	be asked	to attemp	ot only 1 of	question	from eac	h unit. Ea	ch question
should be 15 marks.												
	The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks.											
	•						data-tabl			ed if reau	ired.	
	•	mes [Bl				0		j	F			
Course		×.			0			ofavo	hicle ur	der diff	erent ope	rating
CO1	-	ions, [K .			e uie po	wei ieq	unemen		incic ui		crent ope	Tatting
CO2	Ability [K2, F		ents to	understa	and the v	various o	compone	nts of au	ıtomobi	le transn	nission sy	/stem.
CO3	Ability	y of stud	ents to u	understa	nd the v	arious co	omponer	ts of aut	omobile	e control	system.	[K1, K2]
CO4	Ability	y of stud	ents to u	understa	nd the b	asic com	ponents	of the g	reen vel	nicles. [K	K1, K2]	
CO/ PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
C01	3	3	3	2	3	2	2	-	-	-	3	3
CO2	3	3	3	2	3	2	1	-	-	-	3	3
CO3	3	3	3	2	3	2	1	-	-	-	3	3
CO4	2	2	2	2	3	3	3	-	-	-	3	3
Course	e Conte	nt										No of lectures
constru Power powere											[8]	

Approved by BoS of USAR : 15/06/2023, Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Approved by AC sub-committee : 04/07/2023

I

Clutch: Clutch Fundamentals, Different type of clutches, Torque transmitted through clutch, Energy lost during engagement, Energy dissipated due to clutch slippage. Transmission: Requirements for manual and automatic transmission, their type and constructional detail.	[8]					
Unit III						
 Steering and Suspension: Steering mechanisms and steering system including power steering, turning radius calculation, Steering gear ratio, Forward and reverse efficiency of steering gear, Inertia torque effecting steering, suspension principle, rigid axle suspension and independent suspension, Mechanics of an independent suspension system. Drive Line: Introduction to driveline components, Critical speed of Propeller shaft, speed variations of Hooke Joint, differential gear ratio. 	[9]					
Unit IV						
 Braking System: Introduction to braking system and their types, stopping distance, Work done in braking and braking efficiency, ABS. Wheel and Tyres: Disc pressed wheels, static and dynamic balancing of wheels, types and manufacturing, tubed and tubeless tyres, radial tyres, tyre specifications and coding. Electric Vehicle: Introduction, Types of Electric Vehicle. Components of electric vehicles. 						
Text Books:						
 [T1] Giri, N. K., Automobile Mechanics, Khanna Publishers, New Delhi (2011). [T2] Hiller, V. A. W., Fundamentals of Motor Vehicle Technology, Nelson Thornes, UK (2012) Garrett, T. K., Newton, K. and Steeds, W., The Motor Vehicle, Butterworth-Heinemann, Britain, London (2001). 						
Reference Books:						
 [R1] Norton, A. A., Book of the Car, Automobile Association, London (1977). [R2] Heinz, H., Advance Vehicle Technology, Arnold Publishers, Butterworth-Heinemann, Le (1999). [R3] Crouse, W. and Anglin, D., Automotive Mechanics, Tata McGraw Hill, New Delhi (2006). 	ondon					

[R4] Heinz, H, Engine and Vehicle Technology, Arnold Publishers, Butterworth-Heinemann, London (2002).

Paper	Code: AF	RO 483								L	T/P	Credits
Subjec	et: Smart	Materi	als: Inti	roductio	n & Ap	plicatio	ns			3	0	3
Teache	ng Schem ers Continu erm Theory	ious Ev		-		•						1
INSTR	RUCTION	IS TO	PAPER	SETTE	RS: N	Maximu	ım Mar	ks: As p	er univer	sity nor	ms	
≫	There sho	uld be 9	9 questio	ons in the	e end ter	m exam	ination o	question	paper			
≫	Question No. 1 should be compulsory and cover the entire syllabus. This question should have										ave	
ol	bjective or	short a	unswer t	ype ques	tions. It	should	be of 15	marks.				
\gg	Apart from	n Quest	tion No.	1, the re	est of the	paper s	shall con	sist of fo	ur units a	s per the	syllabu	is. Every
	nit should		-			students	may be	asked to	attempt o	only 1 qu	lestion f	rom each
	nit. Each c	•					1				an Tha	atom doud/
	The quest evel of the				1 0			0			er. The	standard/
	The requir	•						•			if requir	ed
	e Outcom					-					ii iequii	
COII st		-			0	. ,,		materia	s & struc	tures []	K1 K2	
CO1:	-											
02:	modern a					the ple	zoelectri		rt polym	ers and	utilize i	menn for
CO3:	Ability of rheologic				-		•			o rheolo	gical &	magneto
CO4:	-	of stud	ents to	describe	e the fu		-			Biomin	netics in	n various
CO/ PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	2	2	2	2	-	-	-	3	1	2	3
CO2	3	2	2	2	2	-	-	-	3	1	2	3
CO3	3	2	2	2	3	-	-	-	3	1	3	3
CO4	3	2	2	2	3	-	-	-	3	1	3	3
Course	e Content											No of lectures
Structu	uction: C res and P a, Applicat	roducts	Techno	ologies. (· •							IGI

 Processing of Smart Materials: Semiconductors and their processing, Metals and metallization techniques, Ceramics and their processing, Polymers and their synthesis, UV radiation curing of polymers. Advances in smart structures & materials: Self-Sensing Piezoelectric Transducers, Energy Harvesting Materials, Autophagous Materials, Self- Healing Polymers, Intelligent System Design, Emergent System Design 	
Unit II	
 Piezoelectric Materials: Introduction, Cantilever Piezoelectric actuator model, Properties of Piezoelectric materials, Applications. Magnetic Actuation: Concepts and Principles, Magnetization and Nomenclatures, Fabrication and case studies, Comparison of major sensing and actuation methods. Active Smart Polymer: Polymers in MEMS– Polimide - SU-8 - Liquid Crystal Polymer (LCP) – PDMS – PMMA – Parylene– Fluorocarbon 	[9]
Electro-strictive Materials, Magneto-strictive Materials, Magneto electric Materials	
 Unit III Shape Memory Alloys: Introduction, Phenomenology, Influence of stress on characteristic temperatures, Modelling of shape memory effect. Vibration control through shape memory alloys. Design considerations, multiplexing embedded NiTiNOL actuators. Electro rheological and Magneto rheological Fluids: Mechanisms and Properties, Characteristics, Fluid composition and behaviour, Discovery and Early developments, Summary of material properties. Applications of ER and MR fluids (Clutches, Dampers, others). 	[9]
 Unit IV Fiber Optics: Introduction, Physical Phenomenon, Characteristics, Fibre optic strain sensors, Twisted and Braided Fibre Optic sensors, Optical fibres as load bearing elements, Crack detection applications, Integration of Fibre optic sensors and shape memory elements. Biomimetics: Characteristics of Natural structures. Fibre reinforced: organic matrix natural composites, Natural creamers, Molluscs. Biomimetic sensing, Challenges and opportunities. 	[9]
Text Books: [T1] Smart Materials and Structures, M.V.Gandhi and B.S.Thompson Chapmen & Hall, Lond (ISBN:0412370107) [T2] Smart Structures, Analysis and Design by A V Srinivasan and D M McFarland [T3] Brian Culshaw, Smart Structures and Materials, Artech House, 2000	on, 1992
Reference Books: [R1] Gauenzi, P., Smart Structures, Wiley, 2009 [R2] Cady, W. G., Piezoelectricity, Dover Publication [R3] Shape Memory Materials By Arun D. I., P Chakravarthy	

Paper C	Code: AI	RO 485								L	T/P	Credits
Subject	: Cloud.	Dew. E	dge and	Fog [C	DEF1 C	omputir	19			3	0	3
Markin Teachers	g Schem s Contin	ie: uous Eva	aluation:	As per	universit	ty exami	nation n			to time.	0	5
End Ter		•		-								
						faximu r		-		sity nor	rms	
	ere shou		-				-	-	-	tion shor	ıld have	objective
-	hort ans			-	y and co		Jitti C Syl	14045. 1	ins quest			objective
		• •	-		t of the	paper sh	all cons	ist of fou	ur units a	as per th	e syllab	us. Every
		have two	o questio	ons. Hov	vever, st	udents n	hay be a	sked to a	attempt of	only 1 qu	uestion f	rom each
unit ➤ Tł		ongora	o ha fra	mad kaa	ning in s	viow the	loorning		as of co	urso/nor	or Tho	standard/
	el of the						-	-				stanuaru/
	e require	-						-			f require	d
CO2: To CO3 : T CO4: To CO/	o Analy	ze the di	fferent 7	Threats,	Vulnera	bilities a	nd Attac	ks in Cl	oud com	puting I	Domain. em. [K3,	[K4]
PO	1001	1002	1003	1004	1003	1000	1007	1000	1009	1010	1011	1012
CO1	3	3	3	3	2	3	3	3	3	2	2	3
CO2	3	3	3	3	2	3	3	3	1	3	3	3
CO3	3	3	3	3	2	1	3	3	3	2	1	3
CO4	3	3	3	3	2	2	1	1	1	3	2	3
Course	Content	;										No of lectures
Unit I Introduc provider Service(computi Meghraj	, Softwa IAAS) a ng platfo	are As nd Othe	a Servio rs, Load	ce(SAAS balancii	S), Platf ng and R	form As Resource	a Serv optimiz	ice(PAA ation. Co	AS), Infi ompariso	astructu	re as a g Cloud	[10]
Unit II Introduc and RES			-			-			-			[10]

Approved by BoS of USAR : 15/06/2023, Approved by AC sub-committee : 04/07/2023 Applicable from Batch Admitted in Academic Session 2021-22 Onwards

technology, virtualization applications in enterprises, Pitfalls of virtualization, Multi-entity support, Multi-schema approach, Multi-tenancy using cloud data stores.	
Unit III Cloud security fundamentals, Vulnerability assessment tool for cloud, Privacy and Security in cloud, Cloud computing security architecture, Issues in cloud computing, Issues in Intercloud	[12]
environments, QoS Issues in Cloud, Streaming in Cloud. Quality of Service (QoS) monitoring in a Cloud computing environment, Inter Cloud issues.	[12]
Unit IV	
MICEF Computing(Mist, IOT, Cloud, Edge and FOG Computing), Dew Computing : Concept and	
Application;	[8]
Case Study: Design and Development of MiCEF Computing Programs using Free and Open Source	
Software such as : CloudSim and iFogSim	
Text Books:	
[T1] Cloud Computing Bible : Barrie Sosinsky, Wiley India, 2011	
[T2] Cloud Computing : Principles and Paradigms Paperback, Rajkumar Buyya, James Broberg	, Andrzej
Goscinski, John Wiley & Sons, 2011	
[T3] Cloud Computing Black Book : Kailash Jayaswal, Jagannath Kallakurchi, Donald J. Houd	e, Deven
Shah, Dreamtech Press, 2014	
Reference Books:	
[R1] Cloud Computing : A Practical Approach, Toby Velte, Anthony Velte, Robert E	lsenpeter
McGrawHill, 2017	
[R2] Cloud Computing : A Complete Guide, Gerardus Blokdyk, 5 Starcooks, 2019.	

	Code: Al	RO 487								L	T/P	Credits
Subject	: Social	Media A	nalytics	5						3	0	3
Markin	g Schen	ne:									1	
				-	universit	-						
End Ter	m Theor	y Exami	nation: A	As per ui	niversity	examina	tion nor	ms from	time to	time.		
INSTRU	UCTION	NS TO P	APER S	SETTEI	RS: Max	imum N	farks : A	As per U	niversit	y norms		
▶]	There sho	uld be 9 d	questions	in the en	d term ex	aminatio	n question	n paper				
	-			mpulsory	and cov	er the ent	ire syllab	us. This c	luestion s	hould have	ve objecti	ve or shor
	answer ty			the rest o	f the pape	ar chall co	oncist of f	Cour unite	as par th	a svilabu	Fueru	nit should
	-				ts may be				-	-	-	init snourd
	^			-	U U		e		course/pa	per. The s	standard/	level of th
	•				e level of	•						
	•				ators/ log		ata-tables	s may be	specified	if require	ed	
		-			Level (.1 1' .	1 - 4 ¹ -	1	1	••••••	C
K1, K2	•	students	to under	istand un	e concep		ai meula	anarytic	s and un	derstand	ins sign	incance.
	-	students	to devel	on skills	s required	d for ana	lvzing th	ne effecti	veness o	of social i	media []	K41
					tools of s					i sociar i		121]
C O4: A	bility of	students	to acqui		Indament			•		ls needeo	l to worl	x with
	edia data										L	
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
C O 1	3	3	3	3	2	1	1	1	1	2	1	2
C O2	2	3	3	3	2	1	1	1	1	2	1	
		_	_		2	1	1	1	1	2	1	2
CO3	2	3	3	3	2	1	1	1	1	2	2	2 3
C O 3	2 3		3	3								
CO3		3			2	1	1	1	1	2	2	3
CO3 CO4	3	3			2	1	1	1	1	2	2	3 3 No of
CO3 CO4 Course Unit I Social N	3 Content	3 3 malytics:	3 Introdu	3 action C	2 2 ore Char	1 1 acteristic	1 1 es of Soc	1 1 ial Medi	1 1 a, Types	2 1 of Socia	2 2 I Media,	3 3 No of lectures
CO3 CO4 Course Unit I Social N	3 Content Iedia An media la	3 3 malytics:	3 Introdu	3 action C for Sou	2	1 1 acteristic dia Ana	1 1 cs of Soc lytics (S	1 1 ial Medi SMA), S	1 1 a, Types SMA in	2 1 of Socia small	2 2 Il Media, & large	3 3 No of lectures

Seven Layers of Social Media Analytics, Types of Social Media Analytics, Social Media Analytics Cycle, Challenges to Social Media Analytics, Social Media Analytics Tools

Unit II	
Social Network Structure, Measures & Visualization: Basics of Social Network Structure - Nodes,	
Edges & Tie Describing the Networks Measures - Degree Distribution, Density, Connectivity,	
Centralization, Tie Strength & Trust Network Visualization - Graph Layout, Visualizing Network	
features, Scale Issues.	[9]
Social Media Network Analytics - Common Network Terms, Common Social Media Network	
Types, Types of Networks, Common Network Terminologies, Network Analytics Tools	
Social Media Text Analytics - Types of Social Media Text, Purpose of Text Analytics, Steps in Text	
Analytics, Social Media Text Analysis Tools.	
Unit III	
Social Media Action Analytics - What Is Actions Analytics? Common Social Media Actions,	
Actions Analytics Tools.	
Social Media Hyperlink Analytics - Types of Hyperlinks, Types of Hyperlink Analytics, Hyperlink	
Analytics Tools.	[8]
Social Media Location & Search Engine Analytics : Location Analytics - Sources of Location Data,	
Categories of Location Analytics, Location Analytics and Privacy Concerns, Location Analytics	
Tools Search Engine Analytics - Types of Search Engines, Search Engine	
Analytics, Search Engine Analytics Tools.	
Unit IV	
Social Information Filtering : Social Information Filtering - Social Sharing and filtering ,	
Automated Recommendation systems, Traditional Vs social Recommendation Systems	[8]
Understanding Social Media and Business Alignment, Social Media KPI, Formulating a Social	
Media Strategy, Managing Social Media Risks	
Text Books:	
[T1] F Khan, Gohar. SEVEN LAYERS OF SOCIAL MEDIA ANALYTICS Mining Business Ins	sights
from Social Media Text, Actions, Networks, Hyperlinks, Apps, Search Engine, and Location	-
Gohar F. Khan, 2015.	
[T2] Russell, Matthew A. Mining the social web: Analyzing data from Facebook, Twitter, Linked	In, and
other social media sites. " O'Reilly Media, Inc.", 2011.	
Reference Books:	
[R1] Russell, Matthew A. Mining the social web: Analyzing data from Facebook, Twitter, Linked	lIn, and
other social media sites. " O'Reilly Media, Inc.", 2011.	

Paper (Code: Al	RO 489								L	T/P	Credits
Subject	: Natura	al Langı	lage Pro	ocessing						3	0	3
Teacher		uous Ev		-		y examin examina						
INSTR	UCTIO	NS TO I	PAPER	SETTE	RS: May	kimum N	Aarks :	AS per U	U niversi	ty norm	s	
> (> / > / Course CO1: T CO2: T Model. CO3 : 7 CO4: T	Question short ansy Apart fro have two The quest the quest The requi Outcon To Under To Under [K1, K4 To Under	No. 1 sho wer type of m Questions tions are to cons to be irement of nes [Bloo stand the stand the stand the stand and stand and stand s	puld be co questions on No. 1, s. Howeve to be fran asked sh f (scientif om's Kn e differe e role of nd Analy epts of B	ompulsory the rest of er, studer ned keepi ould be a fic) calcul owledge nt text an Text cla yze the we BlockCha	y and cov of the pap nts may be ng in view t the leve lators/ log e Level (nalytics to assification	e asked to w the lear l of the pr g-tables/ c KL)]: technique ton Tech	ire syllab onsist of a o attempt ning outcorescribed lata-table es. [K2] niques a LP with A	four units only 1 qu comes of 6 textbooks s may be nd analy	as per th estion fro course/pa s. specified ze the w 2, K4]	e syllabu om each u per. The if require vorking o	s. Every minit. standard/ ed of Hidde	unit shoul
CO/ PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	3	3	3	3	2	3	3	3	3	2	2	3
CO2	3	3	3	3	2	3	3	3	1	3	3	3
CO3	3	3	3	3	2	1	3	3	3	2	1	3
CO4	3	3	3	3	2	2	1	1	1	3	2	3
Course	Conten	t										No of lectures
system, expressi	Knowle	edge of content	language	e, Mode	s of lang	language guage: s s: What is	poken a	nd writte	en, Lang	guage sy	stem as	[14]

Meaning in Language Analysis, Levels of Linguistic Analysis: Phonetics, Phonology, Morphology, Syntax, Semantics, Discourse, Pragmatics, Lexicology

Shallow Parsing and Tools for NLP: Morphological Analysis, Tokenization & PoS Tagging, Chunking & Multi word expression (MWE), Named-Entity Recognition, Lemmatizer & Stemming, Morphological Synthesis Deep Parsing and Tools for NLP: Syntactic Parsing Techniques and algorithms, Semantic Parsing, Information Extraction, Automatic Summarization, Anaphora Resolution, Pragmatics and Discourse analysis	
Unit II	
Text Classification: Bag of words representation. Vector space model and cosine similarity. Relevance feedback and Rocchio algorithm. Versions of nearest neighbor and Naive Bayes for text, Text Classification Using Support Vector Machine (SVM), Statistical Parsing.	[8]
Unit III	
NLP with ANN: Issues in using ANN with text, understanding word and sentence embedding, Introduction to NLTK, Binary encoding, TF, TF-IDF encoding, Latent Semantic analysis encoding, Latent Dirichlet Allocation, Word2Vec models (Skip-gram, CBOW, Glove, one hot Encoding), Sequence-to-sequence models (Seq2Seq) - GloVe: Global Vectors for Word Representation	[8]
Unit IV	
Speech Processing: Articulatory Phonetics, Speech Sounds and Phonetic Transcription, Acoustic Phonetics, Phonology, Computational Phonology, Automatic Speech Recognition (ASR), Speech Recognition Approaches, Text to Speech (TTS) system, Speech Synthesis Approaches	[8]
Text Books:	
[T1] Bird S, Klein E, Loper E. Natural language processing with Python: analyzing text with the nalanguage toolkit. " O'Reilly Media, Inc."; 2009.[T2] Thanaki J. Python natural language processing. Packt Publishing Ltd; 2017.	atural
Reference Books:	
[R1] Hardeniya N, Perkins J, Chopra D, Joshi N, Mathur I. Natural language processing: python an NLTK. Packt Publishing Ltd; 2016.	nd
[R2] Srinivasa-Desikan B. Natural Language Processing and Computational Linguistics: A practic to text analysis with Python, Gensim, spaCy, and Keras. Packt Publishing Ltd; 2018.	al guide
to text analysis with 1 yhon, Gensini, spacy, and Kerds. 1 dekt 1 donsning Ltd, 2010.	

DETAILED SYLLABUS FOR NUES COURSES: AIDS/ AIML/ IIOT/ AR

	code: 214 (AIE 211 (AR		-							L	T/P	Credits
Subject	t: Engin	eering E	Conomi	cs						2	0	2
Teacher		uous Ev		_		-					n time to time to t	
INSTR	UCTIO	NS TO I	PAPER	SETTE	RS: Ma	ximum I	Marks :	As per l	U niversi	ty norm	S	
> / > / Course CO1: A CO2: A CO3: A	Question short ans Apart fro have two The quest the quest The requi Outcon Ability to Ability to	No. 1 sho wer type m Question tions are ions to be irement on hes [Blo do under understa determi	ould be co questions on No. 1, s. Howev to be fran e asked sh f (scientif om's Kn erstand en and and p ne econd	ompulson the rest of er, studen ned keep ould be a fic) calcu lowledg conomic use cash pomic life	ry and cov of the pap nts may b ing in vie at the leve ilators/ log e Level (c analysis flow me c of an as	ver the en ber shall c e asked to w the lease el of the p g-tables/o (KL)]: S. [K1, K set and r	consist of o attempt rning outo rescribed data-table (2] (1, K2] eplacemo	four unit only 1 qu comes of textbook es may be	s as per th uestion fr course/pa s. specified	ne syllabu om each n aper. The 1 if requir	unit. standard/	unit should
CO4: A CO/PO		do depr PO02	eciation PO03	analysis PO04	and infl PO05	ation adj PO06	ustment.	[K3, K4 PO08	4] PO09	PO10	PO11	PO12
CO1	-	1	-	-	1	2	3	-	-	-	3	1
CO2	-	1	-	_	1	2	3	_	_	_	3	1
CO3	-	1	-	-	1	2	3	-	-	-	3	1
CO4	-	1	-	-	1	2	3	-	-	-	3	1
Course	Conten	t										No. of Lectures
Elemen	ts of Co	st, Break		nalysis,				-	0	0	onomics, , Interest	1 101
CostDo	minated	Cash Fle	ow Diag	ram Futi	ure Wort	h Metho	d: Introd	uction, l	Revenue	Domina	Diagram, ted Cash oduction,	[0]

Revenue Dominated Cash Flow Diagram, Cost-Dominated Cash Flow Diagram, Alternate approach. Rate of Return Method.	
Unit III Replacement and Maintenance Analysis: Introduction, Types, Determination of economic life of an asset, replacement method. Depreciation: Introduction and methods of depreciation (Straight line, Declining Balance, Sum of the Years Digit method, Sinking fund method, Service output method). Evaluation of public alternative.	[6]
Unit IV Inflation Adjustment: Introduction, Procedure to adjust Inflation, Inflation Adjusted Economic Life of Machines. Inventory Control and Methods, Make or buy decision, Project Management: Introduction, Phases, CPM, Gantt/Time Chart, PERT. Value Analysis / Value Engineering	[6]
Text Books: [T1] R. Paneerselvam, "Engineering Economics", PHI Learning, New Delhi, 2012.	
 [R1] David L. Whitman, Ronald E. Terry, Fundamentals of Engineering Economics and Decision Analysis, Morgan & Claypool Publishers (2012). [R2] John A. White, Kellie Grasman, Fundamentals of Engineering Economic Analysis, Wiley (2) [R3] Leland Blank, Antony Tarquin, Engineering Economy, McGraw Hill, 2002 [R4] K. L. Sharma, An Introduction to Engineering Economics, Momentum Press, 2015. [R5] Chan S. Park, Fundamentals of Engineering Economics, Global Edition-Pearson, (2019). [R6] Zahid A. Khan, Arshad N. Siddiquee, Brajesh Kumar, Mustufa H. Abidi, Principles of Engineering 	2013).

Economics with Applications, Cambridge University Press (2018).

	211 (AI	DS & A R & II(L	T/P	Credits
Subjec	t: Acco	untancy	for En	gineers						2	0	2
Teache		nuous E		-		•					com time to om time to ti	
INSTRUCTIONS TO PAPER SETTERS: Maximum Marks : AS per University norms												
 There should be 9 questions in the end term examination question paper Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, students may be asked to attempt only 1 question from each unit. The questions are to be framed keeping in view the learning outcomes of course/paper. The standard/ level of the questions to be asked should be at the level of the prescribed textbooks. The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required Course Outcomes [Bloom's Knowledge Level (KL)]: CO1: Understand the principles of accountancy [K1, K2]. CO2: Ability to understand journal entry, preparation of balance sheet and trial balance [K1, K2]. 									unit should			
CO4: A		o unders o model										
CO/ PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
CO1	-	-	-	-	-	-	2	2	2	-	3	2
CO2	-	-	-	-	-	-	2	2	2	-	3	2
CO3	-	-	-	-	-	-	2	2	2	-	3	2
CO4	-	-	-	-	-	-	2	2	2	-	3	2
Course Content							No. of Lectures					
Accour	nting, I	nterrelat	tionship	of A	ccountir	ng with	other	Discip	•		eeping and Limitation.	[6]
Accounting Principles, Accounting Concepts and Conventions. Unit II: Journal entries, Compound Journal Entries, Opening Entry, Ledger Posting and Trial Balance, Preparation of Ledger, Posting, Cash Book, Sales and Purchase Book and trial Balance.							[6]					

Approved by BoS of USAR : 15/06/2023, Approved by AC sub-committee : 04/07/2023 Applicable from Batch Admitted in Academic Session 2021-22 Onwards

Unit III: Preparation of Final Accounts with Adjustment, Trading Account, Profit and Loss Account, Balance Sheet. Green Accounting, Social Responsibility Accounting, Accounting ethics	[6]
Unit IV: Concept of Depreciation, Causes and Features of Depreciation, Depreciation Accounting, Fixation of Depreciation Amount, Methods of recording Depreciation, methods of providing Depreciation, Depreciation Policy	[6]
Text Books: [T1] S. N. Maheshwari, Suneel K. Maheshwari and Sharad K. Maheshwari, "Financial Accountin BBA", Vikas Publishing House, 2018.	ng for
 Reference Books: [R1] S. Chakraborty and N.S. Roy, "Accounting and Finance for Engineers", Lawpoint Publicati 2016 [R2] Y. P. Singh, "Accounting and Financial Management for I.T. Professional", New Age Intera 2007. 	
[R3] P.C. Tulsian, "Financial Accounting", Pearson, 2002.	

Paper Code: HSAI 307 (AIDS & AIML) / HSAR 302 (AR & IIOT)	L	T/P	Credits	
Subject: Technical Writing 2				
Marking Scheme: Teachers Continuous Evaluation: As per university examination norms in NUES mo End Term Theory Examination: As per university examination norms in NUES mod				
INSTRUCTIONS TO PAPER SETTERS: Maximum Marks: As per Unive	ersity no	orms		
 There should be 9 questions in the end term examination question paper. Question No. 1 should be compulsory and cover the entire syllabus. This question s short answer type questions. Apart from Question No. 1, the rest of the paper shall consist of four units as per the have two questions. However, students may be asked to attempt only 1 question fro The questions are to be framed keeping in view the learning outcomes of course/pag the questions to be asked should be at the level of the prescribed textbooks. The requirement of (scientific) calculators/ log-tables/ data-tables may be specified 	e syllabus m each u per. The s	s. Every u nit. standard/	init should	
Course Content	X		No. of Lectures	
Unit I Writing Skills: Descriptive, Narrative, Argumentive and Discursive Reflective Evaluative Writing Technical Writing: Definition, Purpose God Characteristics of Te		•	[6]	
Unit II The Technical Writing Process: Prewriting Stage, The Wribag Stage and the Post-w Technical Writing Skills: Researching, Summarizing and Outlining, Visual A Description, Ser of Instructions.	0	0	[6]	
Unit III Formal Formatting: Arrangement of Formal Elements. Front Material. Format Devi of Formal Report-Heading, Pagination, End Material-Citations References and Appendix.		•	[6]	
Unit IV Technical Writing Applications Memorandums and Informal Format, Foreo Format Recommendations and Feasibility Reports. Proposals, Progress Reports. Analysis Reports Brotsional Communication, letters and Job Applications Presentation and Meetings.				
Text Books: [T1] Forsyth. Sandy and Lesley Hutchison, "Practical Composition", Edinburgh	Oliver a	nd Boyd	, 1981	
Reference Books: [R1] Side, Charles H. "How to Write and Present Technical Information. Cambr University Press, 1999, Guffey, Mary Ellen. "Business Communication, Cir College Publishing, 2000.	0	0		

Paper Code: HSAI 302 (AIDS & AIML) / HSAR 301 (AR & HOT)	L	T/P	Credits
Subject: Elements of Indian History for Engineers	2	0	2
Marking Scheme: Teachers Continuous Evaluation: As per university examination norms in NUES mod End Term Theory Examination: As per university examination norms in NUES mod			
INSTRUCTIONS TO PAPER SETTERS: Maximum Marks : As per Universit	y norms	5	
 There should be 9 questions in the end term examination question paper Question No. 1 should be compulsory and cover the entire syllabus. This question s short answer type questions. Apart from Question No. 1, the rest of the paper shall consist of four units as per th have two questions. However, students may be asked to attempt only 1 question from the questions are to be framed keeping in view the learning outcomes of course/patthe questions to be asked should be at the level of the prescribed textbooks. The requirement of (scientific) calculators/log-tables/ data-tables may be specified 	e syllabus om each u per. The s	s. Every u nit. standard/	init should
Course Content			No. of Lectures
Unit I Science and Technology in Ancient India: Astronomy (Surya-Siddhanta, Aryabhatta Mathematics, Agriculture, <i>Shilpa-shastra</i> and Architecture, Physics and Chen (Ayurveda), Metallurgy, Textile Production, Shipbuilding and Armaments.			[6]
Unit II Science and Technology in Medieval India: Geometry, Trigonometry and Algeb Agriculture (Canals and other irrigation systems), Graeco-Arabic Medicine Astronomy, medicine, textile, arms-making, shipbuilding and horticulture.	,	,	[6]
Unit III Modern Science in India: Surveys, Scientific Education, Scientific Societies, Grov Institutions in colonial India, Indian Response.	wth of S	cientific	[6]
Unit IV Post-Independence India: Policies in Science and Technology in independent Indi of Scientific and Industrial Research, Ministry of Science and Technology), In Agricultural Research (1947), Indian Council of Medical Research (1949), DRI Technology, TIFR and Department of Atomic Energy and Nuclear Energy, IS Programme (Satellite and Communication Revolution), Digital India (IT computerization of Indian Railways), C-DOT and Telecom Advancement.	dian Co DO and SRO and	uncil of Defence d Space	[6]
Reference Books: [R1] D.M. Bose, S.N. Sen & B.V. Subbarayappa (Eds.), <i>A Concise History of Sc</i>	ience in	India, N	ew Delh

Indian National Science Academy, 1971

- [R2] David Arnold, The New Cambridge History of India, III-5 (Science Technology and Medicine in Colonial India, Cambridge: Cambridge University Press, 2004
- [R3] Suvobrata Sarkar (Ed.), History of Science, Technology, Environment and Medicine in India, London and New York: Routledge (Taylor & Francis), 2022
- [R4] Deepak Kumar, Science and the Raj: A Study of British India, Oxford Scholarship Online, October 2012.
- [R5] P. Rama Rao, 'Science and Technology in Independent India: Retrospect and Prospect', in *Current Science*, Vol. 74, No.5, 10 March 1998, pp.418-432
- [R6] A.L. Basham, *The Wonder That was India*, Vol. I, New Delhi: Rupa & Co., 1981 (Only Chapter VIII: The Arts and the Appendices: Astronomy, The Calendar, Mathematics, Physics and Chemistry, Physiology and Medicine, Logic and Epistemology, Weights and Measures, Coinage)
- [R7] S.A.A. Rizvi, *The Wonder That was India*, Vol. II, London: Sidgwick & Jackson, 1987 (Chapter VII; Fine Arts-only on Monuments, Architecture and Painting for Geometry, etc.) M.S. Khan, 'Science and Technology in Early Medieval India', in https://dergipark.org.tr/tr/download/article-file/688183

Paper Code: MSAI 304 (AIDS & AIML) / MSAR 303 (AR & IIOT)	L	T/P	Credits	
Subject: Entrepreneurship Mindset 2 0				
Marking Scheme: Teachers Continuous Evaluation: As per university examination norms in NUES mod End Term Theory Examination: As per university examination norms in NUES mod				
INSTRUCTIONS TO PAPER SETTERS: Maximum Marks : As per Universit	y norms	5		
 There should be 9 questions in the end term examination question paper Question No. 1 should be compulsory and cover the entire syllabus. This question s short answer type questions. Apart from Question No. 1, the rest of the paper shall consist of four units as per the have two questions. However, students may be asked to attempt only 1 question fro The questions are to be framed keeping in view the learning outcomes of course/pap the questions to be asked should be at the level of the prescribed textbooks. The requirement of (scientific) calculators/ log-tables/ data-tables may be specified 	e syllabu m each u per. The :	s. Every u init. standard/	init should	
Course Content			No. of Lectures	
Unit I Introduction: The Entrepreneur: Theories of Entrepreneurship; Characteristic entrepreneurs, myths of entrepreneurship: entrepreneurial mindset- creativity (st creative ideas, developing creativity) and innovation (types of Innovation)			[6]	
Unit II Promotion of a Venture and Writing a business plan: Opportunity And Environment Analysis Economic, Social and Technological Analysis. Business business plan, parts of a business plan. Writing a Business Plan.	•		101	
Unit III Entrepreneurship Support: Entrepreneurial Development Programmes (EDP): Government in Organizing EDPs. Institutions supporting small business enterprise state level, other agencies, industry associations.				
Unit IV Practicals: Presenting a business plan Project on Startup India or any other governmentrepreneurship Discussion on why Startup fails, role of MSME etc. Discussion entrepreneur in economic growth Discussion on technology park Case study discussi Indian entrepreneurs.	sion on	role of	נסן	
Reference Books: [R1] Charantimath Entrepreneurship Development and Small Business Enterpri [R2] Bamford C.E-Entrepreneurship: A Small Business Approach, McGraw Hil				

- [R3] Hisrich et al-Entrepreneurship. McGraw Hill Education
- [R4] Balaraju, Theduri- Entrepreneurship Development: An Analytical Study. Akansha Publishing House.
- [R5] David, Otis- A Guide to Entrepreneurship, Jaico Books Publishing House, Delhi.
- [R6] Kaulgud, Aruna- Entrepreneurship Management. Vikas Publishing.