SCHEME OF EXAMINATION

And

SYLLABI

for

BRIDGE COURSE
(Construction Technology)
LEVEL IV SKILL COMPONENT

Offered by

University School of Engineering and Technology

1st SEMESTER to 2nd SEMESTER

Guru Gobind Singh Indraprastha University
Sector 16-C, Dwarka, Delhi – 110078 [INDIA]

www.ipu.ac.in
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET</td>
<td>Engineering and Technology</td>
</tr>
<tr>
<td>AP</td>
<td>Architecture and Planning</td>
</tr>
<tr>
<td>V</td>
<td>Vocation</td>
</tr>
<tr>
<td>MC</td>
<td>Mobile Communication</td>
</tr>
<tr>
<td>SD</td>
<td>Software Development</td>
</tr>
<tr>
<td>AE</td>
<td>Automobile</td>
</tr>
<tr>
<td>CE</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>PT</td>
<td>Printing Technology</td>
</tr>
<tr>
<td>CT</td>
<td>Construction Technology</td>
</tr>
<tr>
<td>RA</td>
<td>Refrigeration & Air-Conditioning</td>
</tr>
<tr>
<td>PD</td>
<td>Power Distribution Management</td>
</tr>
<tr>
<td>ID</td>
<td>Interior Design</td>
</tr>
<tr>
<td>AA</td>
<td>Applied Arts</td>
</tr>
<tr>
<td>CS</td>
<td>Computer Science</td>
</tr>
<tr>
<td>MS</td>
<td>Management Studies</td>
</tr>
<tr>
<td>EN</td>
<td>Environmental Engineering</td>
</tr>
<tr>
<td>PH</td>
<td>Physics</td>
</tr>
<tr>
<td>AS</td>
<td>Applied Science</td>
</tr>
<tr>
<td>HS</td>
<td>Humanities and Social Sciences</td>
</tr>
<tr>
<td>SS</td>
<td>Social Services</td>
</tr>
<tr>
<td>L/T</td>
<td>Lecture and Tutorial</td>
</tr>
<tr>
<td>P</td>
<td>Practical</td>
</tr>
<tr>
<td>S/D</td>
<td>Drawing/Studio</td>
</tr>
<tr>
<td>P/D</td>
<td>Practical/Drawing</td>
</tr>
</tbody>
</table>
TITLE OF THE PROGRAMME
BACHELOR OF VOCATION IN CONSTRUCTION TECHNOLOGY

Preamble
Construction activity is an integral part of nation’s infrastructure and industrial development. Construction industry is vital in socio-economic development and also generates substantial employment and provides a growth impetus to other sectors through backward and forward linkages. Construction Technology deals with design, construction and maintenance of hospitals, schools, townships, offices, houses and other buildings; urban infrastructure (including water supply, sewerage, drainage); highways, roads, ports, railways, airports; power systems; irrigation and agriculture systems; telecommunications; dams, bridges, tunnels and other structures. Requirement of skilled personnel/ technicians in construction engineering works is growing day to day. Construction industries, public & private entrepreneurs, government organizations, builders, Real Estate owners are in need of technicians in this area. Hence this course has several advantages that will enables student to get engaged in any civil engineering work area.

Objectives of course
The B. Voc in Construction Technology aims at providing the expertise needed to effectively lead a construction project and work with industry. It aims at providing over all technical proficiency, the industrial working exposure, and the entrepreneurial skills for success in this ever-evolving industry.

The curriculum teaches you how to integrate multiple professional requirements for bringing construction projects to successful completion, including building construction, planning and drafting, estimating, cost control, new technologies, methods of surveying & advanced surveying, concrete technology, geo-technology, structural design, CAD, water management & sanitation, transportation engineering, project planning, scheduling & negotiation, and labour management etc. The coursework aims at managing various types of contractual relationships governing the owner, the contractor, subcontractors, consultants, and architects, as well as the essential skills of bidding, negotiating, handling disputes and claims. To train the students to gear up to employment opportunities in construction industry in Private & Public sectors, state and central public works departments and other Government undertakings, Self-employment ventures/ Civil Engineering Contractor etc.

Program Structure
The course titled as B.Voc. (Construction Technology) is proposed with Bridge course and modular structure that gives exit option after every year with employable skill at the end of each module. The three modules are as under:

<table>
<thead>
<tr>
<th>Award</th>
<th>Duration</th>
<th>Corresponding NSQF level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diploma</td>
<td>1 year</td>
<td>5</td>
</tr>
<tr>
<td>Advanced Diploma</td>
<td>2 years</td>
<td>6</td>
</tr>
<tr>
<td>B. Voc. Degree</td>
<td>3 years</td>
<td>7</td>
</tr>
</tbody>
</table>

All students should undergo bridge course program of 180 hrs duration in each semester for first two semesters along with level-5 regular course (i.e. first year of B.Voc). The credits earned are of qualifying nature and Scheme and Syllabi for B. Voc. (Construction Technology), w. e. f. batch 2015-16, approved in the 24th BOS of USET & AC Sub Committee Meeting of USET held on 31st July, 2015.
should be completed within four semesters (2 years) for obtaining Diploma/Advanced Diploma/ B.Voc Degree, as a pre-requisite. A certificate to this effect shall be issued by the Principal/Director of affiliated Institutes to be submitted to COE. NSQF LEVEL-IV certification may be done through the respective agencies involved.

Program Outcomes

1. Diploma in Construction Technology

Outcome: Student shall have acquired adequate skills to assist and work as surveyor, drafts man, supervisor and site engineer. After successful completion of this module and some additional practice the student should have attained

- Skill in preparing, reading and interpreting drawing pertaining to Civil engineering and allied works
- Understanding the use of various types of construction materials, their characteristics and suitability in construction sector
- Ability to perform surveying works for various construction works & exposure to various digital equipment
- Competencies in estimating and costing and contracting of civil works including measurement and billing
- Knowledge of appropriate attitude and values and awareness regarding ecology and environment engineering
- Skill in using computers in the field of civil engineering

2. Advanced Diploma in Construction Technology

Outcome: Student shall have acquired adequate skills to work as surveyor, drafts man, supervisor and site engineer. Student can work as an assistant to mix designer, project manager and design engineer. After successful completion of this module and some additional practice the student should have attained

- Understanding of concepts, principles and practices in making concrete and concreting operations for different types of civil works
- Analytical ability and understanding of behaviour of various types of soils and their uses for civil works
- Analytical ability and understanding of behaviour of fluid mechanics and its applications
- Analysis and design of simple structural elements in concrete and steel and skill of preparing and reading detailed structural drawings
- Awareness regarding facilities and support system to promote entrepreneurship development
- Ability to use the knowledge of building services in preparing computer based drawings as per requirements
- Design of pavements in transportation engineering
- Ability to perform surveying works for various construction works using digital equipment

3. Bachelor of Vocation in Construction Technology

Outcome: Student shall have acquired adequate skills to work as surveyor, drafts man, supervisor, site engineer, mix designer, Technical Report writer, project manager and design engineer. Further it opens the gates to further
vertical mobility in career. After successful completion of this module and some additional practice the student should be able to take up his own self-employment ventures/contracts/projects

- Ability to supervise various civil works such as buildings, industrial structures, bridges, tunnels, roads, irrigation structures, water works etc.
- Application of knowledge of planning, scheduling, controlling and skill of advanced surveying in supervising various construction projects
- Skill in managing construction materials, equipment, manpower and cash flow
- Competencies in maintenance, repairs and upkeep of building
- Knowledge of principles of water supply and sanitary engineering and methods of treating water and sewage
- Rigorous training in enhancing communication skills, technical English and interpersonal relations and skills in communication
- Awareness regarding hazards, safety measures at construction site
- Awareness about Contract laws & regulation, Disaster Management, waste management
- Exposure to various computation skills such as MATLAB and Civil engineering design and drafting software
- Ability in preparing computer based structural drawings
PREAMBLE

It has been a long felt necessity to align higher education with the emerging needs of the economy so as to ensure that the graduates of higher education system have adequate knowledge and skills for employment and entrepreneurship. The higher education system has to incorporate the requirements of various industries in its curriculum, in an innovative and flexible manner while developing a holistic and well-groomed graduate. The University Grants Commission (UGC) has launched a scheme on skills development based higher education as part of college/university education, leading to Bachelor of Vocation (B.Voc.) Degree with multiple exits such as Diploma/Advanced Diploma under the NSQF (National Skills Qualifications Framework)

PROGRAMS

Vocational, or skills-based, education is becoming more and more significant in today’s perspective as industry expecting new employees to have all the practical skills they need to start work. Keeping in view the demands of the industry and to provide flexible options for students as desired by UGC the Guru Gobind Singh Indraprastha University have launched Bachelor of Vocation courses in 10 sectors namely during academic year 2015-16.

1. Applied Art
2. Interior Design
3. Automobile
4. Construction Technology
5. Consumer Electronics
6. Mobile Communication
7. Printing & Publishing
8. Power Distribution and Management
9. Refrigeration & Air Conditioning
10. Software Development

These programmes aim to build individual capacities and train persons with adequate employability skills. The programme structure attempts to blend appropriate technical knowledge and skills, personal and professional skills and substantive ‘hands-on’ and field/site experience required in the trade.

Eligibility for admission into B.Voc:

Courses 1&2: candidates having obtained minimum 50% in 10+2 in any stream

Courses 3 to 10: candidates having obtained minimum 50% in 10+2 in Science Stream (Physics, Chemistry and Mathematics)

10+2 years ITI (of the analogous stream)

The candidates should not be less than 16 years and more than 45 years.
The program structure:

Levels of Awards:
The certification levels will lead to Diploma/Advanced Diploma/B. Voc. Degree in one or more vocational areas and will be offered under the aegis of the University.

<table>
<thead>
<tr>
<th>Award</th>
<th>Duration</th>
<th>Corresponding NSQF level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diploma</td>
<td>1 year</td>
<td>5</td>
</tr>
<tr>
<td>Advanced Diploma</td>
<td>2 years</td>
<td>6</td>
</tr>
<tr>
<td>B. Voc. Degree</td>
<td>3 years</td>
<td>7</td>
</tr>
</tbody>
</table>

Duration: 6 Semesters (3 years). This three year full time programme is divided into six semesters, each of 15 weeks including assessment. In addition all students are expected to undergo industrial training / project work for 4-8 weeks every semester that may continue partly during summer / winter breaks. All students should undergo bridge course program of 180 hrs duration in each semester for first two semesters along with level 5 regular course. The credits earned are of qualifying nature and should be completed within four semesters (2 years) for obtaining Diploma/Advanced Diploma/ B.Voc Degree, as a pre-requisite. A certificate to this affect shall be issued by the Principal/Director of affiliated Institutes to be submitted to COE. NSQF LEVEL-IV certification may be done through the respective agencies involved.

Scheme and Syllabi for B. Voc. (Construction Technology), w. e. f. batch 2015-16, approved in the 24th BOS of USET & AC Sub Committee Meeting of USET held on 31st July, 2015.
BACHELOR OF VOCATION
CONSTRUCTION TECHNOLOGY
BRIDGE COURSE FOR (10+2 PCM)/10+ITI STUDENTS
(FIRST SEMESTER EXAMINATION)

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Paper ID</th>
<th>Paper</th>
<th>L</th>
<th>T/P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETVCT-401</td>
<td></td>
<td>Bridge Workshop-I</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>ETVCT-403</td>
<td></td>
<td>Information Technology Workshop-I</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>ETVCT-405</td>
<td></td>
<td>Engineering Drawing-I</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>0</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

No. of hours: 12 x 15 =180

BACHELOR OF VOCATION
CONSTRUCTION TECHNOLOGY
BRIDGE COURSE FOR (10+2 PCM)/10+ITI STUDENTS
(SECOND SEMESTER EXAMINATION)

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Paper ID</th>
<th>Paper</th>
<th>L</th>
<th>T/P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETVCT-402</td>
<td></td>
<td>Bridge Workshop-II</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>ETVCT-404</td>
<td></td>
<td>Information Technology Workshop-II</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>ETVCT-406</td>
<td></td>
<td>Engineering Drawing-II</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>0</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

No. of hours: 12 x 15 =180

Note: The students are advised to mandatorily complete the bridge course alongwith LEVEL-V regular course. The credits earned are of qualifying nature and should be completed within four semesters (2 years) for obtaining Diploma/Advanced Diploma/ B.Voc Degree, as a pre-requisite. A certificate to this affect shall be issued by the Principal/Director of affiliated Institutes to be submitted to COE. NSQF LEVEL-IV certification may be done through the respective agencies involved.

Scheme and Syllabi for B. Voc. (Construction Technology), w. e. f. batch 2015-16, approved in the 24th BOS of USET & AC Sub Committee Meeting of USET held on 31st July, 2015.
BRIDGE WORKSHOP-I

Paper Code: ETVCT-401
Paper: Bridge Workshop-I

Objectives and Pre-requisites: To have a balanced overall development of student; To integrate theory with practice; To provide hand on experience about use of different tools and basic manufacturing practices; To develop general manual and machining skills in the students.

Learning outcomes: Students are able to respect and visualize dignity of labour, precision, safety at work place, team working and development of right attitude.

DETAILED CONTENTS (PRACTICAL EXERCISES)

Note: The students are supposed to come in proper workshop dress prescribed by the institute. Wearing shoes in the workshop(s) is compulsory. Importance of safety and cleanliness, safety measures and upkeep of tools, equipment and environment in each of the following shops should be explained and practiced. The students should prepare sketches of various tools/jobs in their practical Notebook.

MASONRY SHOP
1. Demonstration, function and use of commonly used tools.
2. Care, maintenance of tools and safety measures to be observed in Plumbing shop.
3. Preparation of mortar and cement concrete
4. Importance of form work and material used in form work
5. Slab, lintel & sunshade, column & footing and beam reinforcement
6. Differentiate and demonstrate steel reinforcement bars of different diameters (plain bar, ribbed, tor steel etc.)

CARPENTRY SHOP
1. Demonstration, function and use of commonly used hand tools.
2. Care, maintenance of tools and safety measures to be observed in carpentry shop.
3. Introduction to various types of wood such as Deodar, Kail, Partal, Teak, Mango, Sheesham, etc. (Demonstration and their identification).
4. Marking, sawing, planning and chiseling & their practice (size should be mentioned)
5. Introduction to various types of wooden joints, their relative advantages and uses.

PAINTING SHOP
1. Demonstration, function and use of commonly used tools.
2. Care, maintenance of tools and safety measures to be observed in painting shop.
3. Demonstration of various types of paints used
4. Methods of painting wooden items
5. Preparation of wooden surface before painting including primer coating

FITTING SHOP
1. Demonstration, function and use of commonly used tools.
2. Care, maintenance of tools and safety measures to be observed in fitting shop.
3. Introduction to common materials used in fitting shop
4. Identification of materials. Such as Steel, Brass, Copper, Aluminium etc.
5. Identification of various sections of steel such as Flat, Angle, Tee, Channel, Bar Girder, Square, Z-Section, etc.
6. Demonstration of various types of work benches, holding devices.

WELDING SHOP
1. Demonstration, function and use of commonly used tools.
2. Care, maintenance of tools and safety measures to be observed in welding shop.

Scheme and Syllabi for B. Voc. (Construction Technology), w. e. f. batch 2015-16, approved in the 24th BOS of USET & AC Sub Committee Meeting of USET held on 31st July, 2015.
3. Introduction to welding and its importance in engineering practice
4. Introduction to welding equipment and safety precautions during hazards of welding and its remedies.
5. Practice in setting current and voltage for striking proper arc. Earthing of welding machine.

References Books:

LT. WORKSHOP-I
(BASICS OF INFORMATION TECHNOLOGY- I)

Paper Code: ETVCT-403
Paper: Basics of Information Technology-I

<table>
<thead>
<tr>
<th>L</th>
<th>T/P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Objectives & Prerequisites: To study and understand the fundamentals of computer system. To learn details of hardware and software components. Proper exposure to various aspects of information technology such as understanding the concept of information technology and its scope; operating a computer; use of various tools of MS Office/Open Office and internet form the broad competency profile of students. To have rigorous practice of MS word, Excel and power point tools. To use MS office tools to prepare desired assignments. Basic mathematical knowledge and willingness to excel are the basic prerequisites.

Learning outcomes: This exposure will enable the students to enter their professions with confidence, live in a harmonious way and contribute to the productivity. Being a bridge course it helps in understanding of software and CAD in the later stages of the course. Useful in preparing project reports in both academic and professional fronts.

DETAILED CONTENTS (PRACTICAL EXERCISES)

1. To study concept and scope, applications of IT, ethics and future with information technology
2. A report on impact of computer and IT in society
3. A report on Generations of computer, block diagram of a computer, CPU, memory, data – numeric data, alpha numeric data, processing of data.
4. To study about Computer hardware and software; primary and secondary memory: Input devices; output devices
5. To study Introduction to Operating Systems such as MS-DOS and Windows, difference between DOS and Windows.
6. To understand Basics of Networking – LAN, MAN, WAN
7. To Identify and list functions of various components and peripherals of given computer.
9. Installing a computer system by giving connection and loading the system software and application software and various sources to install software
10. Exercises on entering text and data (Typing Practice)
11. To practice Features of Windows as an operating system:
 a) Start, shutdown and restore
 b) Creating and operating on the icons
 c) Opening, closing and resizing the windows
 d) Using elementary job commands like – creating, saving, modifying, renaming, finding and deleting a file, creating and operating on a folder
 e) Introduction to all properties such as changing settings like, date, time, calculator, colour (background and foreground)
 f) Using short cuts
12. Word Processing (MS Office/Open Office)- To prepare a report using various features of MS word
 a) File Management:
 b) Opening, creating and saving a document, locating files, copying contents in some different file(s)
 c) b) Editing a document:
 d) Entering text, cut, copy, paste using toolbars
 e) Use of spell check
 f) PDF file and its conversion in different file formats (MS Word/Excel etc.)
 g) Scanning, editing and printing of a document
 h) Formatting a document:
 i) Using different fonts, changing font size and colour, changing the appearance through bold/italic/underlined, highlighting a text, changing case, using subscript and superscript, using different underline methods
 j) Aligning of text in a document, justification of document, inserting bullets and numbering
 k) Formatting paragraph, inserting page breaks and column breaks, line spacing
 l) Use of headers, footers, inserting footnote, endnote, use of comments
 m) Inserting date, time, special symbols, importing graphic images, drawing tools
n) d) Tables and Borders:
 o) Creating a table, formatting cells, use of different border styles, shading in tables, merging of cells, partition of cells, inserting and deleting a row in a table
 p) How to change docx file to doc file
 q) Print preview, zoom, page set up, printing options
 r) Using Find, Replace options

13. Spread Sheet Processing (MS Office/Open Office) - To prepare a report using various features of MS Excel
 a) Starting Excel
 b) open worksheet, enter, edit data, formulae to calculate values, format data, create chart, printing chart, save worksheet, switching between different spread sheets
 c) Menu commands: Create, format charts, organize, manage data, solving problem by analyzing data, creating graphs
 d) Work books: Managing workbooks (create, open, close, save, rename), working in work books
 e) Editing a worksheet: copying, moving cells, pasting, inserting, deleting cells, rows, columns, find and replace text, numbers of cells, formatting worksheet
 f) Creating a chart: Working with chart types, changing data in chart, formatting a chart, use chart to analyze data
 g) Using a list to organize data, sorting and filtering data in list
 h) Formulas: Addition, subtraction, division, multiplication, percentage and auto sum
 i) Introduction to PowerPoint

14. Power Point Presentation (MS Office/Open Office) - To prepare a power point presentation
 a) Introduction to PowerPoint
 b) How to start PowerPoint
 c) Working environment: concept of toolbars, slide layout, templates etc.
 d) Opening a new/existing presentation
 e) Different views for viewing slides in a presentation: normal, slide sorter etc.
 f) Addition, deletion and saving of slides
 g) Insertion of multimedia elements
 h) Adding text boxes, importing pictures, tables and charts etc.
 i) Formatting slides: Text formatting, changing slide layout, changing slide colour scheme
 j) Changing background, Applying design template
 k) How to view the slide show?
 l) Viewing the presentation using slide navigator, Slide transition
 m) Animation effects etc.

Note:
Explanation of Introductory part and theory should be dovetailed with practical work. Following topics may be explained in the laboratory along with the practical exercises. There will not be any theory examination.

References Books:
[R2] Fundamentals of Computer by V Rajaraman; Prentice Hall of India Pvt. Ltd., New Delhi
[R3] Computer Fundamentals by PK Sinha; BPB Publication, New Delhi
[R4] MS Office by BPB Publications, New Delhi
Prerequisites & Objectives: Drawing is said to be the language of engineers and technicians. Reading and interpreting engineering drawing is their day-to-day responsibility. The course is aimed at developing basic graphic skills so as to enable them to use these skills in preparation of engineering drawings, their reading and interpretation.

Learning outcomes: Being bridge course it helps understanding the concepts of Civil engineering drawing and drafting in later stages. Helps in understanding CAD in later stages. Improved abilities of draftsmanship.

DETAILED CONTENTS

2. To draw and practice Different types of Lines and Free Hand Sketching (minimum 1 sheet).
3. Different types of lines in engineering drawing as per BIS specifications.
4. Practice in free hand sketching of vertical, horizontal and inclined lines, geometrical figures such as triangles, rectangles, small and large circles, parabolas, curves and ellipses.
5. Lettering Techniques and Practice- Instrumental single stroke (capital and inclined) lettering of 35 mm height in the ratios of 7:4.
7. Free hand lettering (alphabet and numerals) lower case and upper case, single stroke vertical and inclined at 75 degree in different standard series of 2.5, 3, 5, 7, 10, and 15 mm heights in the ratio of 7:4.
8. Dimensioning- Necessity of dimensioning, terms and notations – methods and principles, dimensioning small components (practice & theoretical instructions).
9. Dimensioning of overall sizes, circles, thread holes, chamfered surfaces, angles, tapered surface holes equally spaced on PCD, counter sunk hole counter bored holes, cylindrical parts, narrow space and gaps, radii, curves and arches – chain and parallel dimensioning.
10. Scales – their need and importance, Definition of representative fraction (RF); Find RF of a given scale.
11. Study Types of scales.
12. Construction of plain and diagonal scales.
13. Principle of orthographic projection & Projection of points situated in different quadrants.
14. Projection of lines, Lines inclined to one plane and parallel to the other and vice versa.
15. Projection of Planes: Planes perpendicular and parallel to either of the planes; planes perpendicular to one plane and parallel to the other or vice versa.

References Books:
[R1] ND Bhatt, V.M. Panchal, Engineering Drawing-Planes & Solid Geometry”, Charotar publishing house
Principles of Building Drawing by MG Shah and CM Kale, MacMillan, Delhi
BRIDGE WORKSHOP-II

Paper Code: ETVCT-402
Paper: Bridge Workshop-II

Objectives and Pre-requisites: To have a balanced overall development of student; To integrate theory with practice; To provide hand on experience about use of different tools and basic manufacturing practices; To develop general manual and machining skills in the students.

Learning outcomes: Students are able to respect and visualize dignity of labour, precision, safety at workplace, team working and development of right attitude.

DETAILED CONTENTS (PRACTICAL EXERCISES)

Note: The students are supposed to come in proper workshop dress prescribed by the institute. Wearing shoes in the workshop(s) is compulsory. Importance of safety and cleanliness, safety measures and upkeep of tools, equipment and environment in each of the following shops should be explained and practiced. The students should prepare sketches of various tools/jobs in their practical Notebook.

PLUMBING & SANITATION

1. Demonstration, function and use of commonly used tools. Necessity of plumbing. Technical terms used
2. Care, maintenance of tools and safety measures to be observed in Plumbing shop.
3. GI pipe marking, threading, cutting and jointing
4. PVC pipe marking, cutting, threading and jointing
5. Use of PPR and their jointing
6. Building services, types of valves and uses
7. Water meter connection, water closets, flush tanks
8. Field visit

SHEET METAL SHOP

1. Demonstration, function and use of commonly used tools.
2. Care, maintenance of tools and safety measures to be observed in sheet metal shop.
3. Demonstration of various machines and equipment used in sheet metal shop.
4. Demonstration of various raw materials used in sheet metal.

SMITHY SHOP

1. Demonstration, function and use of commonly used tools.
2. Care, maintenance of tools and safety measures to be observed in smithy shop.
3. Forging operations in smithy shop. Safety measures to be observed in the smithy shop.
4. Demonstration and description of bending operation, upsetting operation.
5. Description and specification of anvils, swage blocks, hammers etc.
6. Demonstration and description of tongs, fullers, swages etc.

ELECTRICAL SHOP

1. Demonstration, function and use of commonly used tools.
2. Care, maintenance of tools and safety measures to be observed in Electrical shop.
3. Familiarization with various electrical tools and safety measures
4. Study of various types of wirings: conduit/concealed/batten etc
5. Study of distribution boards
6. Various types of faults in house wiring

References Books:

Scheme and Syllabi for B. Voc. (Construction Technology), w. e. f. batch 2015-16, approved in the 24th BOS of USET & AC Sub Committee Meeting of USET held on 31st July, 2015.
Scheme and Syllabi for B. Voc. (Construction Technology), w. e. f. batch 2015-16, approved in the 24th BOS of USET & AC Sub Committee Meeting of USET held on 31st July, 2015.

LT. WORKSHOP-II
(BASICS OF INFORMATION TECHNOLOGY-II)

Paper Code: ETVCT-404
Paper: Basics of Information Technology-II
L T/P C
0 4 4

Objectives & Pre-requisites: To understand the utility of antivirus, various types, its installation, usage to remove virus from corrupted files. To understand the power of internet. To open email account operating with email. To learn the fundamentals of basics of computer programming. To study and understand various features of C/C++. To be in a position to write programs involve general logic and technical in nature. Basic mathematical knowledge, basics of information technology and willingness to excel in computer programming are the basic prerequisites.

Learning outcomes: This exposure will enable the students to enter their professions with confidence, live in a harmonious way and contribute to the productivity. Being a bridge course it helps in understanding of software and CAD in the later stages of the course. Ability to develop and write programs in C/C++ for various problems while developing and preparing project reports in both academic and professional fronts.

DETAILED CONTENTS (PRACTICAL EXERCISES)

1. Antivirus- installation & scanning of corrupted files
a) What is virus and its types
b) Problems due to virus
c) Installation and updation of antivirus (anyone out of Kaspersky, Mcafee, Norton, Quickheal etc).
d) How to scan and remove the virus

2. Practice of Internet surfing and its Applications
a) Log-in to internet, introduction to search engine
b) Browsing and down loading of information from internet
c) Creating e-Mail Account, Log in to e-mail account and Log out from e-mail account
d) Managing e-Mail- Creating, Sending, receiving, forwarding, deleting, attaching a file

3. Introduction to programming - “C/C++”
a) Development of C, starting with C- alphabets, digits, special symbols
b) Constants, variables and special symbols
c) Instructions

4. Study of C- pre-processor features
5. Study of structures- case control structures, loops control structures and decision control structures
6. Study of input output functions, types of functions
7. Study of file concept- opening, reading, closing, writing etc
8. Study and use of concept of pointers
9. Study the concept of arrays

Note:
Explanation of Introductory part and theory should be dovetailed with practical work. Emphasis should be more on programming techniques rather than language itself. Students are encouraged to develop algorithms of programs and practicing in the laboratory along with the practical exercises. There will not be any theory examination.

References Books:
[R1] Internet for Every One by Alexis Leon and Mathews Leon; Vikas Publishing House Pvt. Ltd., Jungpura, New Delhi

Scheme and Syllabi for B. Voc. (Construction Technology), w. e. f. batch 2015-16, approved in the 24th BOS of USET & AC Sub Committee Meeting of USET held on 31" July, 2015.
ENGINEERING DRAWING-II

INSTRUCTIONS TO PAPER SETTERS: MAXIMUM MARKS: 75
1. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 25 marks.
2. Apart from Question No. 1, rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, student may be asked to attempt only 1 question from each unit. Each question should be 12.5 marks.

Prerequisites & Objectives: Drawing is said to be the language of engineers and technicians. Reading and interpreting engineering drawing is their day-to-day responsibility. The course is aimed at developing basic graphic skills so as to enable them to use these skills in preparation of engineering drawings, their reading and interpretation.

Learning outcomes: Being bridge course it helps understanding the concepts of Civil engineering drawing and drafting in later stages. Exposure CAD software enhances the confidence of the student and his abilities of draftsmanship.

DETAILED CONTENTS

1. Need for sectional views
 a. cutting planes methods of representing sections
 b. conventional sections of various material
 c. classification of sections
 d. conventions in sectioning
2. Drawing of full section, half section, partial or broken out section, offset sections, revolved sections & removed sections. Exercises on sectional views of different objects.
3. Drawing of different conventions for materials in sections. Conventional breaks for shafts, pipes: Rectangular/square/circular, angle, channel and Rolled sections.
4. Fundamentals of isometric projections and draw Isometric views from given orthographic views
5. Symbols, Conventions and simple drawing of Sanitary fitting symbols
6. Draw the Electrical fittings Symbols for domestic interior installations
7. Building plan drawing with Electrical and Civil Engineering symbols.
8. Introduction to CAD & Installation of CAD software
9. AutoCAD- An over view
10. Definition and practice of various commands used in AUTOCAD
11. Using CAD software draw different Geometric Constructions
 a. Divide a given line into desired number of equal parts internally
 b. Draw tangent lines and arcs
 c. Construct a hexagon from the given data
 d. Construct ellipse, parabola, hyperbola, cycloid, and helix.
12. Using AUTOCAD software draw conventional signs as per I. S. standards and, different symbols used in civil engineering drawing & dimensioning and lettering

INSTRUCTIONAL STRATEGY
Teachers are expected to develop skills in preparation of proper drawings with emphasis onto prepare drawings on AutoCAD as per IS code of practice. Attention must be paid towards line work, specifications writing, dimensioning, proportioning and accuracy. At different intervals of time, practice of reading and interpreting actual field drawing should also be practiced so as to develop necessary competencies in the students.

Scheme and Syllabi for B. Voc. (Construction Technology), w. e. f. batch 2015-16, approved in the 24th BOS of USET & AC Sub Committee Meeting of USET held on 31st July, 2015.
References Book(s):
[R5] RS Malik, “Civil Engineering Drawing”, Asia Publishing House

Scheme and Syllabi for B. Voc. (Construction Technology), w. e. f. batch 2015-16, approved in the 24th BOS of USET & AC Sub Committee Meeting of USET held on 31st July, 2015.
SCHEME OF EXAMINATION

And

SYLLABI

for

BACHELOR OF VOCATION
in
CONSTRUCTION TECHNOLOGY

Offered by

University School of Engineering and Technology

1st SEMESTER to 6th SEMESTER

Guru Gobind Singh Indraprastha University
Dwarka, Delhi – 110078 [INDIA]

www.ipu.ac.in

Scheme and Syllabi for B. Voc. (Construction Technology), w. e. f. batch 2015-16, approved in the 24th BOS of USET & AC Sub Committee Meeting of USET held on 31st July, 2015.
BACHELOR OF VOCATION
(CONSTRUCTION TECHNOLOGY)
FIRST SEMESTER EXAMINATION
(LEVEL-V)

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Paper ID</th>
<th>Paper</th>
<th>L</th>
<th>T/P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY PAPERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETVCT-501</td>
<td>Building Construction</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ETVCT-503</td>
<td>Surveying-I</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ETVHS-519</td>
<td>Communication Skills (Common to all disciplines)</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>OPEN ELECTIVE-I (Select any one)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETVME-501</td>
<td>Applied Mechanics</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ETVAS-507</td>
<td>Applied Mathematics</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GENERAL ELECTIVE-I (Select any one)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETVHS-513</td>
<td>Human Values and Professional Ethics</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ETVHS-515</td>
<td>Life Skills</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ETVHS-517</td>
<td>Personality Development & Behavioral Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>PRACTICAL/VIVA VOCE (Select any one Lab based on OPEN ELECTIVE-I)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETVME-551</td>
<td>Applied Mechanics Lab</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ETVAS-557</td>
<td>Applied Mathematics Lab</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PRACTICAL/VIVA VOCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETVCT-551</td>
<td>Building Construction Lab</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ETVCT-553</td>
<td>Surveying-I</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ETVCT-555</td>
<td>Vocation Workshop – I (Discipline specific)</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>13</td>
<td>18</td>
<td>30</td>
</tr>
</tbody>
</table>

Industrial Training-I: The students are advised to undergo two weeks training in house/industry/ Skill Knowledge Provider (SKP)/ Sector Skill Council (SSC) during winter Vacation and should submit training report for evaluation during the second semester.

General Elective –II (Select any One): NCC, NSS, YOGA, Sports, Community Services, ECO Club
Note: The student can opt to take General Elective-II during the first to fifth semesters and can earn credits and/or certificate as per the requirements of the course opted for during the fifth semester. The camps or classes for the said programme can be held either during weekend/holidays or winter/summer vacations. If in case, the classes are held during Saturday/Sunday then faculty should be given off in lieu of Saturday/Sunday. Those students who complete General Electives-II shall be given certificate if they opt out of the programme taking Diploma/Advanced Diploma.

Note: It is very important to decide the General Elective(s), Core Elective(s) and Open Elective(s) to be offered in the next semester well before the completion of current semester. General/Core/Open Elective Paper(s) will be floated if about 50% (Not Less than 1/3rd) of the total students opt for the same in each case.

Scheme and Syllabi for B. Voc. (Construction Technology), w. e. f. batch 2015-16, approved in the 24th BOS of USET & AC Sub Committee Meeting of USET held on 31st July, 2015.
BACHELOR OF VOCATION (CONSTRUCTION TECHNOLOGY)
SECOND SEMESTER EXAMINATION (LEVEL-V)

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Paper ID</th>
<th>Paper</th>
<th>L</th>
<th>T/P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETVCT-502</td>
<td></td>
<td>Building Planning and Construction Technology</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ETVCT-504</td>
<td></td>
<td>Estimating & Costing</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>ETVEN-502</td>
<td></td>
<td>Environmental Studies (Common to all disciplines)</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

OPEN ELECTIVE-II (Select any one)

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Paper ID</th>
<th>Paper</th>
<th>L</th>
<th>T/P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETVCT-506</td>
<td></td>
<td>Basic Electronics</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ETVPH-502</td>
<td></td>
<td>Applied Physics</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ETVEE-508</td>
<td></td>
<td>Basics of Electrical Engineering</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ETVME-510</td>
<td></td>
<td>Engineering Materials</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

PRACTICAL/VIVA VOCE (Select any one Lab based on OPEN ELECTIVE-II)

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Paper ID</th>
<th>Paper</th>
<th>L</th>
<th>T/P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETVPH-566</td>
<td></td>
<td>Basic Electronics Lab</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ETVPH-552</td>
<td></td>
<td>Applied Physics Lab</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ETVEE-558</td>
<td></td>
<td>Basics of Electrical Engineering Lab</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ETVME-560</td>
<td></td>
<td>Engineering Materials</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

PRACTICAL/VIVA VOCE

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Paper ID</th>
<th>Paper</th>
<th>L</th>
<th>T/P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETVCT-552</td>
<td></td>
<td>Civil Engineering Drawing</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>ETVCT-554</td>
<td></td>
<td>Estimating & Costing</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ETVEN-552</td>
<td></td>
<td>Environmental Science Lab / Field work (Common to all disciplines)</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ETVCT-556</td>
<td></td>
<td>Project-I</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ETVCT-558</td>
<td></td>
<td>Industrial Training-I*</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ETVCT-562</td>
<td></td>
<td>(Vocation Workshop – II) (Discipline specific)</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL

| | | | 12 | 18 | 32 |

Note for Project:
The student will submit a synopsis at the beginning of the semester for approval from the departmental committee in a specified format, thereafter he/she will have to present the progress of the work through seminars and progress reports.

Industrial Training-II:
The students are advised to undergo 6-8 weeks training in industry/ Skill Knowledge Provider (SKP)/ Sector Skill Council (SSC) during summer vacation and should submit training report for evaluation during the Third semester and credits will be posted during third semester.
Objectives and Pre-requisites: Well versed with salient features of site selection, building bye-laws, types of foundations & their suitability, concept of masonry and types, significance and details of floors, lintels & arches, roofs, stairs, damp-proofing, surface finishes, building planning and services, seismic planning and interior design. To have exposure about various components of buildings as required in construction engineering. Urge to thrive and learn and common sense are pre-requisites.

Learning outcomes: The students should be able to visualize the concepts of different components buildings. Ability to perform the task of supervising construction of buildings will be improved. This subject helps in better understanding of the various subjects of this course in later stages.

UNIT-I
Definition of a building, classification of buildings based on occupancy, Site selection: Factors to be considered for selection of site for residential, commercial, industrial and public building, Components of building, arrangement of doors, windows, cupboards etc. for residential building. Concept of foundation and its purpose, Types of foundations - shallow and deep; suitability and use of - Spread foundations, stepped foundation, masonry pillars and concrete columns, raft foundation, combined footing. Thumb rules for depth and width of foundation and thickness of concrete block. Pile foundations; their suitability, classification of piles according to function, material and installation of concrete piles (undreamed, bored, compacted).

UNIT-II
Masonry, brick masonry - Definition of terms: mortar, bond, facing, backing, heading, column, pillar, jambs, reveals, soffit, plinth, plinth masonry, header, stretcher, bed of brick, bat, queen closer, king closer, frog and quoin, Bond - meaning and necessity; English bond; Bond only 1, 1-1/2 and 2 Brick thick walls in English Bond. T, X and right-angled corner junctions Thickness for 1, 1-1/2 and 2 Brick square pillars in English bond. Construction of Brick Walls - Method of laying bricks in walls, precautions observed in the construction of walls, method of bonding new brick work with old (Toothing, raking back and block bonding) Construction, expansion and contraction joints; purpose and constructional details. Stone Masonry, glossary of terms - Natural bed, bedding planes, string course, corbel, cornice, block-in course, grouting, mouldings, templates, throating, through stones, parapet, coping, pilaster and buttress. Types of stone Masonry: Rubble Masonry; random and coarsed, Ashlar Masonry: Ashlar fine, Ashlar rough, Ashlar facing, specifications for coarse rubble masonry, principles to be observed in construction of stone masonry walls. Surface Finishes: different types, preparations and applications of plastering, pointing, painting, white washing and curing. Damp Proofing: Dampness: sources, causes and its ill effects, Damp proofing materials and their specifications, Methods of damp proofing: basement, ground floors, plinth and walls, special damp proofing arrangements in bathrooms, WC and kitchen, roofs and window sills, Plinth protection and aprons.

UNIT-III

Scheme and Syllabi for B. Voc. (Construction Technology), w. e. f. batch 2015-16, approved in the 24th BOS of USET & AC Sub Committee Meeting of USET held on 31st July, 2015.
battened doors, ledged, battened and braced door, framed and panelled doors, glazed and panelled doors, flush doors, collapsible doors, rolling steel shutters, side sliding doors, door frames, PVC shutters and metal doors, Window-names, uses and Types: metal windows, fully panelled windows, fully glazed windows, casement windows, fanlight windows and ventilators, sky light window frames, louvered shutters (emphasis shall be given for using metals and plastics etc. in place of timber).

UNIT-IV
Floors, Ground floors- glossary of terms: floor finish, topping, under layer, base course, rubble filling, dado and their purpose. Types of floor finishes –cast-in-situ, concrete flooring (monolithic, bonded) Terrazzo flooring, Stone flooring(marble/Granite), Timber flooring, PVC floor, ceramic floor description with sketches and the methods of construction of the floors and their specifications, floor polishing. Upper floors- floor covering on RCC slab, Maintenance of floors. Types of roofs, concept of flat, pitched, arched and cell roofs, Glossary of terms for pitched roofs – Various types of Trusses: Timber and steel, batten, eaves, barge, fascia board, gable hip, lap, purlin, rafter, rag bolt, valley, ridge, etc. Stairs- Glossary of terms: different means of access to various floor, stair case, winders, landing, stringer, newel, baluster, riser, tread, width of staircase, hand rail, nosing, etc. Planning and layout of staircase: Relations between rise and tread, determination of width of stair, landing etc. Various types of layout-straight flight, dog legged, open well, quarter turn, half turn (newel and geometrical stairs), bifurcated stair, spiral stair. Introduction to anti-termite measures; building services; earthquakes: Magnitude and intensity, seismic zoning, seismograph. Precautions to be observed in the design of earthquake prone buildings.

Text Book(s):

References Book(s):

Scheme and Syllabi for B. Voc. (Construction Technology), w. e. f. batch 2015-16, approved in the 24th BOS of USET & AC Sub Committee Meeting of USET held on 31st July, 2015.
Surveying I

Objectives and Pre-requisites: The students should have basic knowledge of understanding of building components. To learn the basic concept of surveying, study and understand the types of surveying and its applications in Civil Engineering. To have exposure about chain surveying, compass surveying, leveling and plane tabling as required in field.

Learning outcomes: The students should be able to visualize the concepts of different types of surveying. To perform surveying work individually. Well versed with computations of traversing, plotting, adjustments as required. Well conversant with levelling operation and calculations. Able to perform surveying projects in the field. Helpful in performing survey work in the construction projects such as: detailed surveying, plotting of survey data, preparation of survey maps and setting out works.

UNIT I
Introduction and concept of surveying, purpose and objective of surveying, classification of surveying, basic principles of surveying, measurements-linear and angular, units of measurements, Instruments used for taking these measurements. Chain surveying: Introduction, technical terminology (chaining, ranging, offsetting, leader, follower, different points, different lines, different sketches etc.) principle of chain surveying purpose of chain surveying, advantages and disadvantages. Instruments: - types, construction, working and tests & adjustments. Methodology: Field procedure & operations- chaining, ranging and offsetting in different cases; recording and plotting. Obstacles in chaining, ranging and both, solutions to obstacles. Errors in chain surveying and corrections, traversing by chain surveying- recording and plotting.

[unit duration][No. of Hrs: 11]

UNIT II
Compass surveying: Introduction and purpose of compass surveying, principle of compass surveying. Concept of meridian, types of meridians; concept of bearing, different types of bearing; systems of bearing; forward bearing and backward bearing, systems of bearing- WCB & QB. Magnetic dip and declination, isogonics, agonics and isoclinic lines; Local attraction- definition, causes, detection, elimination; Types of compass construction, working. Use of prismatic compass: Setting and taking observations. Traversing by compass- different types, field procedure, recording, plotting, checks, closing error and its adjustment; Errors in compass surveying. Numerical problems shall be solved on systems of bearing, declination, local attraction and traversing.

[unit duration][No. of Hrs: 11]

UNIT III
Purpose of leveling, concept of a level surface, horizontal surface, vertical surface, datum, MSL, station, gradient, reduced level, bench marks, line of collimation, axis of the bubble tube, axis of the telescope, vertical axis, back sight, foresight, intermediate sight, change point etc. Types of levels, Identification of various parts, uses, advantages and disadvantages of Dumpy level & Auto level. Leveling staff-single piece, folding, invar precision and telescopic. Temporary adjustments and permanent adjustment of dumpy level.

Methods of computing reduced levels-Height of Instrument method and rise and fall method (Arithmetic checks, problem on reduction of levels). Types of leveling- simple leveling, Differential leveling, Fly leveling, check leveling, profile leveling (Longitudinal-section & cross-section) and reciprocal leveling. Errors in leveling and permissible limits.

[unit duration][No. of Hrs: 11]

UNIT IV
Plane Table Surveying- Introduction and purpose of plane table surveying, principle of plane table surveying, study of plane table and its accessories used in plane table survey. Field operations/ procedure: - Setting up of a plane table, Centering, Leveling, marking North direction, Orientation (back sighting & trough compass).

[unit duration][No. of Hrs: 11]

Instructions to Paper Setters:
1. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 25 marks.
2. Apart from Question No. 1, rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, student may be asked to attempt only 1 question from each unit. Each question should be 12.5 marks.
Methods of plane table surveying: Radiation, Intersection, Traversing and Resection. Resection: - Concept of Two point and Three point problems (Concept only). Errors, precautions, advantages and disadvantages of plane table surveying. Introduction to the odolite and total station- uses and applications.

[T1, T2, T3][No. of Hrs: 11]

Text Book(s):

References Books:
COMMUNICATION SKILLS
(Common to All Disciplines)

Paper Code: ETVHS-519
Paper: Communication Skills

INSTRUCTIONS TO PAPER SETTERS:

1. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 25 marks.
2. Apart from Question No. 1, rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, student may be asked to attempt only 1 question from each unit. Each question should be of 12.5 marks.

MAXIMUM MARKS: 75

COMMUNICATION SKILLS
(Common to All Disciplines)

Paper Code: ETVHS-519
Paper: Communication Skills

Objectives and Pre-requisites: Students should have studied General English up to secondary level and the subject aims at developing communication skills in writing, speaking as well as body language.
Learning Outcomes: The students should be able to communicate effectively to his/her superiors as well as juniors at workplace in his/her professional field.

UNIT-I

UNIT-II
Listening Skills: Types of Listening (theory/definition), Tips for Effective Listening Academic Listening (lecturing), Listening to Talks and Presentations, Basics of Telephone communication
Writing Skills: Standard Business letter, Report writing, Email drafting and Etiquettes, Preparing Agenda and writing minutes for meetings, Making notes on Business conversations, Effective use of SMS, Case writing and Documentation.

UNIT-III
Soft Skills: Empathy (Understanding of someone else point of view), Intrapersonal skills, Interpersonal skills, Negotiation skills, Cultural Aspects of Communication.

UNIT-IV

Text Books:

Reference Books:

Scheme and Syllabi for B. Voc. (Construction Technology), w. e. f. batch 2015-16, approved in the 24th BOS of USET & AC Sub Committee Meeting of USET held on 31st July, 2015.
APPLIED MECHANICS

Paper Code: ETVME-501
Paper: Applied Mechanics

<table>
<thead>
<tr>
<th>L</th>
<th>T/P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

INSTRUCTIONS TO PAPER SETTERS:

1. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 25 marks.
2. Apart from Question No. 1, rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, student may be asked to attempt only 1 question from each unit. Each question should be 12.5 marks.

MAXIMUM MARKS: 75

Objectives and Pre-requisites: The subject Applied Mechanics deals with basic concepts of mechanics like laws of forces, moments, friction, centre of gravity, laws of motion and simple machines which are required to the students for further understanding of other applied subjects. To introduce the concepts of rigid body mechanics for bodies at rest and in motion to students. To make the students appreciate the applications of basic laws of physics to a variety of problems. Inculcating and enhancing analytical skills to solve numerical problems. Upon the completion of course student should be able to understand the importance of mechanics in engineering and various concepts.

Learning outcomes: Students will be able to state the relevant laws and apply them to numerical problems. Students will be able to draw free-body diagrams for a given problem and get the required solution. Students will be able to visualize the applications of basic laws in solving numerical problems. Students will be able to correlate the concepts learnt in the relevant courses of higher classes.

UNIT-I:
Introduction- Concept of mechanics and applied mechanics – Explanation of mechanics and applied Mechanics, its importance and necessity, giving suitable examples on bodies at rest and in motion, explanation of branches of this subject.
Laws of Forces- Force and its effects. Units and measurement of force. Characteristics of force vector representation. Bow’s notation. Types of forces, action and reaction, tension & thrust. Force systems: Coplanar and space force systems. Coplanar, concurrent and non -concurrent forces. Free body diagrams. Resultant and components of forces, concept of equilibrium; parallelogram law of forces. Equilibrium of two forces, superposition and transmissibility of forces, Newton’s third law, triangle law of forces, different cases of concurrent coplanar, two forces systems, extension of parallelogram law and triangle law to many forces acting at one point-polygon law of forces, method of resolution into orthogonal components for finding the resultant, graphical methods, special case of three concurrent, coplanar forces, Lami’s theorem.

UNIT-II:
Moments- Concept of moment, Varignon’s theorem – statement only. Principle of moments – application of moments to simple mechanism. Parallel forces, like and unlike parallel forces, calculation of their resultant, concept of couple, moving a force parallel to its line of action, general cases of coplanar force system, general conditions of equilibrium of bodies under coplanar parallel forces.
Friction- Concept of friction, laws of friction, limiting friction and coefficient of friction, sliding friction and rolling friction, inclined plane.

UNIT-III:
Centre of Gravity and Centroid- Concept of gravity, gravitational force, Centroid and centre of gravity. Centroid for regular lamina and center of gravity for regular solids. Position of centre of gravity of compound bodies and centroid of composite area. CG of bodies and areas with portions removed.
Moment of Inertia of Plane Areas- Concept of Moment of Inertia and second moment of area and Radius of gyration, theorems of parallel and perpendicular axes, second moment of area of common geometrical sections: rectangle, triangle, circle (without derivations). Second moment of area for L, T and I sections. Section modulus without derivation.

UNIT-IV
Laws of Motion- Concept of momentum, Newton’s laws of motion, their application, derivation of force equation from second law of motion, numerical problems on second law of motion, piles, lifts, bodies tied with

Scheme and Syllabi for B. Voc. (Construction Technology), w. e. f. batch 2015-16, approved in the 24th BOS of USET & AC Sub Committee Meeting of USET held on 31st July, 2015.
string. Newton’s third law of motion numerical problems, conservation of momentum, impulse and impulsive force (definition only).

Simple Lifting Machines - Concept of machine, mechanical advantage, velocity ratio and efficiency of a machine, their relationship, law of machine, simple machines (lever, wheel and axle, pulleys, jacks winch crabs only).

| No. of Hours: 10 |

Text Book(s):

References Book(s):

| R1 | Beer and Johnston, “Mechanics for Engineers (Statics and Dynamics)”, McGraw Hill Co. Ltd. |
Objective: The objective of the paper is to facilitate the student with the basics of Applied Mathematics that are required for an engineering student.

UNIT- I
Successive differentiation: Leibnitz theorem for n^{th} derivative (without proof). Infinite series: Convergence and divergence of infinite series, positive terms series, necessary condition, comparison test (Limit test), D’Alembert ratio test, Integral Test, Cauchy’s root test, Raabe’s test and Logarithmic test(without proof). Alternating series, Leibnitz test, conditional and absolutely convergence. Taylor’s and Maclaurin’s expansion(without proof) of function e^x, $\log(1+x)$, $\cos x$, $\sin x$ with remainder terms. Taylor’s and Maclaurin’s series, Error and approximation.

UNIT- II
Asymptotes to Cartesian curves. Radius of curvature and curve tracing for Cartesian, parametric and polar curves. Integration: integration using reduction formula for $\int_0^\pi \sin^n \theta \cos^m \theta d\theta$, $\int_0^\pi \sin^n \theta d\theta$. Application of integration: Area under the curve, length of the curve, volumes and surface area of solids of revolution about axis only. Gamma and Beta functions.

UNIT- III

UNIT- IV
Ordinary differential equations: First order linear differential equations, Leibnitz and Bernoulli’s equation. Exact differential equations, Equations reducible to exact differential equations. Linear differential equation of higher order with constant coefficients, Homogeneous and non homogeneous differential equations reducible to linear differential equations with constant coefficients. Method of variation of parameters. Bessel’s and Legendre’s equations (without series solutions), Bessel’s and Legendre’s functions and their properties.

Text:

References:
[R5] Schaum’s Outline on Linear Algebra, Tata McGraw-Hill
HUMAN VALUES & PROFESSIONAL ETHICS
(General Elective-I)

Paper Code: ETVHS-513
Paper: Human Values & Professional Ethics

<table>
<thead>
<tr>
<th>L</th>
<th>T/P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Non-University Examination Scheme (NUES)
Note: There will be no End-Term External University Examination. Marks are to be given on the basis of two internal sessional test of 30 marks each and one final Viva-voce project report Examination of 40 marks.

Objectives:
This introductory course input is intended
a. To help the students appreciate the essential complementarity between ‘VALUES’ and ‘SKILLS’ to ensure sustained happiness and prosperity which are the core aspirations of all human beings.
b. To facilitate the development of a holistic perspective among students towards life, profession and happiness, based on the correct understanding of the Human reality and the rest of the Existence. Such a Holistic perspective forms the basis of value-based living in a natural way.
c. To highlight plausible implications of such a Holistic understanding in terms of ethical human conduct, trustful and mutually satisfying human behaviour and mutually enriching interaction with Nature.

UNIT-1: Introduction to Value Education
1. Understanding the need, basic guidelines, content and process for value education.
2. Basic Human Aspirations: Prosperity and happiness
3. Methods to fulfil the human aspirations – understanding and living in harmony at various levels.
4. Practice Session – 1.

UNIT-2: Harmony in the Human Being
1. Co-existence of the sentient “I” and the material body–understanding their needs–Happiness & Conveniences.
2. Understanding the Harmony of “I” with the body–Correct appraisal of physical needs and the meaning of prosperity.
3. Programme to ensure harmony of “I” and Body-Mental and Physical health and happiness.
5. Understanding society and nation as extensions of family and society respectively.
6. Practice Session – 02

UNIT-3: Basics of Professional Ethics
1. Ethical Human Conduct – based on acceptance of basic human values.
2. Humanistic Constitution and universal human order – skills, sincerity and fidelity.
3. To identify the scope and characteristics of people – friendly and eco-friendly production system, Technologies and management systems.
4. Practice Session – 03

UNIT-4: Professional Ethics in practice
1. Profession and Professionalism – Professional Accountability, Roles of a professional, Ethics and image of profession.
2. Engineering Profession and Ethics - Technology and society, Ethical obligations of Engineering professionals, Roles of Engineers in industry, society, nation and the world.
3. Professional Responsibilities – Collegiality, Loyalty, Confidentiality, Conflict of Interest, Whistle Blowing
4. Practice Session – 04

Text Books:
[T1] Professional Ethics, R. Subramanian, Oxford University Press.
[T2] Professional Ethics & Human Values: Subhash Bhalchandra Gogate, Vikas publication

References:
[R1] Success Secrets for Engineering Students: Prof. K.V. SubbaRaju, Ph.D., Published by SMARTstudent.

Scheme and Syllabi for B. Voc. (Construction Technology), w. e. f. batch 2015-16, approved in the 24th BOS of USET & AC Sub Committee Meeting of USET held on 31st July, 2015.
CONTENT OF PRACTICE SESSION

Module 1: Course Introduction – Needs, Basic Guidelines, Content and Process of Value Education

PS-1: Imagine yourself in detail. What are the goals of your life? How do you set your goals in your life? How do you differentiate between right and wrong? What have been your achievements and shortcomings in your life? Observe and analyze them.

Expected Outcome:
The students start exploring themselves; get comfortable to each other and to the teacher and start finding the need and relevance for the course.

PS-2: Nowadays there is a lot of voice about techno-genie maladies such as energy and natural resource depletion, environmental pollution, global warming, ozone depletion, deforestation, etc. – all these scenes are man-made problems threatening the survival of life on the earth – what is root cause of these maladies and what is the way out in your opinion?
On the other hand, there is a rapidly growing danger because of nuclear proliferation, arm race, terrorism, criminalization of politics, large scale corruption, scams, breakdown of relationships, generation gap, depression and suicidal attempts, etc – what do you think the root cause of these threats to human happiness and peace – what could be the way out in your opinion?

Expected Outcome:
The students start finding out that technical education with study of human values can generate more solutions than problems. They also start feeling that lack of understanding of human values is the root cause of all the problems and the sustained solution could emerge only through understanding of human values and value based living. Any solutions brought out through fear, temptation or dogma will not be sustainable.

PS-3:1. Observe that each one of us has Natural Acceptance, based on which one can verify right or not right for him. Verify this in case of following:
 a) What is naturally acceptable to you in relationship – feeling of respect or disrespect?
 b) What is naturally acceptable to you to nurture or to exploit others? Is your living the same as your natural acceptance or different?
2. Out of three basic requirements for fulfillment of your aspirations, right understanding, relationship and physical facilities, observe how the problems in your family are related to each. Also observe how much time and efforts you devote for each in your daily routine.

Expected Outcome:
1. The students are able to see that verification on the basis of natural acceptance and experiential validation through living is the only way to verify the right or wrong, and referring to any external source text or instrument or any other person cannot enable them to verify with authenticity, it will only develop assumptions.
2. The students are able to see that their practice in living is not in harmony with their natural acceptance at most of the time, and all they need to do is to refer to their natural acceptance to remove this disharmony.
3. The students are able to see that lack of right understanding leading to lack of relationship is the major cause of the problems in their family and the lack of physical facilities in most of the cases; while they have given higher priority to earning of physical facilities in their life ignoring relationship and not being aware that right understanding is the most important requirement for any human being.
Module 2: Understanding harmony in human being – Harmony in myself!

PS-4: Prepare the list of your desires. Observe whether the desires. Observe whether the desires are related with self “I” or body. If it appears to be related with the both, see which part of it is related to self “I” and which part is related to body.

Expected Outcome:
The students are able to see that they can enlist their desires and the desires are not vague, also they are able to relate their desires to “I” and “body” distinctly. If, any desire appears to be related with both, they are able to see that feeling is related to “I” while the physical facility is related to the body. They are also able to see that “I” and “body” are two realities, and most of their desires are related to “I” and not with the “Body”; while their efforts are mostly connected on the fulfillment of the need of the body assuming that it will meet the needs of “I” too.

PS-5:
1. **(A).** Observe that any physical facilities you use, follows the given sequence with time: Necessary and tasteful – unnecessary & tasteful – unnecessary & tasteless.
 (B). In contrast, observe that any feelings in you are either naturally acceptable or not acceptable at all. If, naturally acceptable, you want it continuously and if not acceptable, you do not want it at any moment.
2. List Down all your activities. Observe whether the activity is of “I” or of “body” or with the participation both “I” and “body”.
3. Observe the activities with “I”. Identify the object of your attention for different moments (over a period say 5 to 10 minute) and draw a line diagram connecting these points. Try to observe the link between any two nodes.

Expected Outcome:
1. The students are able to see that all physical facilities they use are required for limited time in a limited quantity. Also they are able to see that cause of feeling, they want continuity of the naturally acceptable feelings and they do not want feelings which are not naturally acceptable eve for a single moment.
2. The students are able to see that activities like understanding, desires, thoughts and selection are the activities of “I” only; the activities like breathing, palpitation of different parts of the body are fully the activities of the body. With the acceptance of “I”, while activities they do with their sense organs like hearing through ears, seeing through eyes, sensing through touch, tasting through tongue and smelling through nose or the activities they do with their work organs like hands, legs, etc. are such activities that require the participation of both “I” and “body”.
3. The students become aware of their activities of “I” and start finding their focus of attention at different moments. Also they are able see that most of their desires are coming from outsides (through preconditioning or sensation) and are not based on their natural acceptance.

PS-6:
1. Chalk out the program to ensure that you are responsible to your body – for the nurturing, protection and right utilization of the body.
2. Find out the plants and shrubs growing in and your campus. Find out their use for curing different diseases.

Expected Outcome:
The students are able to list down activities related to a proper upkeep of the body and practice them in their daily routine. They are also able to appreciate the plants wildly growing in and around the campus which can be beneficial in curing the different diseases.

Module 3: Understanding harmony in the family and society - Harmony in Human – Human relationship

PS-7: Form small groups in the class and in that group initiate the dialogue and ask the eight questions related to trust. The eight questions are-

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Intention (Natural Acceptance)</th>
<th>S.No.</th>
<th>Competence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.a.</td>
<td>Do I want to make myself happy?</td>
<td>1.b.</td>
<td>Am I liable to make myself always Happy?</td>
</tr>
</tbody>
</table>

Scheme and Syllabi for B. Voc. (Construction Technology), w. e. f. batch 2015-16, approved in the 24th BOS of USET & AC Sub Committee Meeting of USET held on 31st July, 2015.
<table>
<thead>
<tr>
<th>2.a.</th>
<th>Do I want to make the other happy?</th>
<th>2.b.</th>
<th>Am I liable to make the other always happy?</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.a.</td>
<td>Does the other want to make him happy?</td>
<td>3.b.</td>
<td>Is the other able to make him always happy?</td>
</tr>
<tr>
<td>4.a.</td>
<td>Does the other want to make me happy? What is answer?</td>
<td>4.b.</td>
<td>Is the other able to make me always happy? What is answer?</td>
</tr>
</tbody>
</table>

Let each student answer the question for himself and everyone else. Discuss the difference between intention and competence.

Expected Outcome:
The students are able to see that the first four questions are related to our natural acceptance i.e. intention and the next four to our competence. They are able to note that the intention is always correct, only competence is lacking. We generally evaluate ourselves on the basis of our intention and other on the basis of their competence. We seldom look at our competence and other’s intention as a result we conclude that I am a good person and other is a bad person.

PS-8:
1. Observe that on how many occasions you are respecting your related ones (by doing the right evaluation) and on how many occasion you are disrespecting by way of under evaluation, over evaluation or otherwise evaluation.
2. Also observe whether your feeling of respect is based on treating the other as yourself or on differentiations based on body, physical facilities or beliefs.

Expected Outcome:
The students are able to see that respect is right evaluation and only right evaluation leads to fulfilment of relationship. Many present problems in the society are an outcome of differentiation (lack of understanding of respect) like gender biasness, generation gap, caste conflicts, class struggle, and domination through poor play, communal violence, and clash of isms and so on so forth.

All these problems can be solved by realizing that the other is like me as he has the same natural acceptance, potential and program to ensure a happy and prosperous life for him and for others though he may have different body, physical facilities or beliefs.

PS-9:
1. Write a note in the form of a story, poem, skit, essay, narration, dialogue, to educate a child.
 Evaluate it in a group.
2. Develop three chapters to introduce “social science”, its needs, scope and content in the primary education of children.

Expected Outcome:
The students are able to use their creativity for educating children. The students are able to see that they can play a role in providing value education for children. They are able to put in simple words the issues that are essential to understand for children and comprehensible to them. The students are able to develop an outline of holistic model for social science and compare it with the existing model.

Module 4: Understanding harmony in the nature and existence – Whole existence as Co – existence

PS-10: Prepare the list of units (things) around you. Classify them into four orders. Observe and explain the mutual fulfilment of each unit with other orders.

Expected Outcome:
The students are able to differentiate between the characteristics and activities of different orders and study the mutual fulfilment among them. They are also able to see that human beings are not fulfilling to their orders today and need to take appropriate steps to ensure right participation (in term of nurturing, protection and right utilization) in the nature.

PS-11:
1. Make a chart for the whole existence. List down different courses of studies and relate them to different or levels in the existence.

Scheme and Syllabi for B. Voc. (Construction Technology), w. e. f. batch 2015-16, approved in the 24th BOS of USET & AC Sub Committee Meeting of USET held on 31st July, 2015.
2. Choose any one subject being taught today. Evaluate and suggest suitable modifications to make it appropriate and holistic.

Expected Outcome:
The students are confident that they can understand the whole existence; nothing is a mystery in this existence. They are also able to see the interconnectedness in the nature, and point out how different courses of study relate to the different units and levels. Also they are liable to make out how these courses can be made appropriate and holistic.

Module 5: Implication of the above Holistic Understanding of Harmony at all Levels of Existence.

PS-12: Choose any two current problem of different kind in the society and suggest how they can be solved on the basis of the natural acceptance of human values. Suggest the steps you will take in present conditions.

Expected Outcome:
The students are liable to present sustainable solutions to the problem in society and nature. They are also able to see that these solutions are practicable and draw road maps to achieve them.

PS-13:
1. Suggest ways in which you can use your knowledge of engineering / technology / management for universal human order from your family to world family.
2. Suggest one format of humanistic constitution at the level of nation from your side.

Expected Outcome:
The students are able to grasp the right utilization of their knowledge in their streams of technology / engineering / management to ensure mutually enriching and recyclable production systems.

PS-14: The course is going to be over now. Evaluate your state before and after the course in terms of-
- Thoughts
- Behavior
- Work and
- Realization

Do you have any plan to participate in the transition of the society after graduating from the institute? Write a brief note on it.

Expected Outcome:
The students are able to sincerely evaluate the course and share with their friends. They are also able to suggest measures to make the course more effective and relevant. They are also able to make use of their understanding in the course for happy and prosperous society.
LIFE SKILLS
(General Elective-I)

Paper Code: ETVHS-515
Paper: Life Skills
L T/P C
2 0 2

INSTRUCTIONS TO PAPER SETTERS:
1. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 25 marks.
2. Apart from Question No. 1, rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, student may be asked to attempt only 1 question from each unit. Each question should be of 12.5 marks.

Objectives and Pre-requisites: Students should have studied subjects such as General languages, social studies and Moral education at school level. The objective of this subject is to prepare the students to become a good citizen and a professional useful to the society.

Learning Outcomes: The knowledge of this subject will give the student a value system which will help him in taking decisions in professional and social life for the benefit of society at large.

UNIT-I
Introduction: Definition and importance of Life Skills, Livelihood Skills, Survival Skills, Life Skills Approach, Life Skills based education, Life Skills Training- Implementation Models

UNIT-II
Learning and Performance, Cognitive Development, Maturation, Adult Learning, Approaches to Learning Pillars of Education and Life Skills- Four Pillars: Learning to Know, Learning to Do, Learning to Live Together, Learning to be learning throughout Life

UNIT-III
Social Skills and Negotiation Skills: Self Awareness, Empathy, Effective Communication, Interpersonal Relationships
Thinking Skills: Nature, Element of Thought, Types, Concept Formation, Reasoning, Creative and Critical Thinking

UNIT-IV
Coping Skills: Coping with Emotions, Coping with Stress, Integrated use of thinking skills, social skills and coping skills

Text Books:

Reference Books:

Scheme and Syllabi for B. Voc. (Construction Technology), w. e. f. batch 2015-16, approved in the 24th BOS of USET & AC Sub Committee Meeting of USET held on 31st July, 2015.
PERSONALITY DEVELOPMENT & BEHAVIORAL SCIENCE (From USMS)
(General Elective-I)

Paper Code: ETVHS-517
L T/P C
Paper: Personality Development & Behavioral Science
2 0 2

INSTRUCTIONS TO PAPER SETTERS:
MAXIMUM MARKS: 75
1. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 25 marks.
2. Apart from Question No. 1, rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, student may be asked to attempt only 1 question from each unit. Each question should be of 12.5 marks.

Objectives and Pre-requisites: Students should have studied subjects such as General languages, social studies and Moral education at school level. The objective of this subject is to prepare the students to become a good citizen and a professional useful to the society.

Learning Outcomes: The knowledge of this subject will give the student a value system which will help him in taking decisions in professional and social life for the benefit of society at large.

UNIT-I
Definition and Basics of Personality, Understanding Traits and Types of Personality, Analyzing strength and weakness (SW), Body Language

UNIT-II
Business Etiquettes and Public Speaking: Business Manners, Body Language Gestures, Email and Net Etiquettes, Etiquette of the Written Word, Etiquette on the Telephone, Handling Business Meetings; Introducing Characteristic, Model Speeches, Role Play on Selected Topics with Case Analysis and Real Life Experiences.

UNIT-III
How to Make a Presentation, the Various Presentation Tools, along with Guidelines of Effective Presentation, Boredom Factors in Presentation and How to Overcome them, Interactive Presentation & Presentation as Part of a Job Interview, Art of Effective Listening.

UNIT-IV
Coping Management, Working on Attitudes: Aggressive, Assertive and Submissive Coping with Emotions, Coping with Stress

Text Books:
[T2] The Results-Driven Manager (2005). Business Etiquette for the New Workplace: The Results-Driven Manager Series (Harvard Results Driven Manager)

Reference Books:
APPLIED MECHANICS LAB

Paper Code: ETVCT-551
Paper: Applied Mechanics Lab

List of Experiments:

1. Verification of the laws of polygon of forces.
2. To verify the forces in the different members of a jib crane.
3. To verify the reaction at the supports of a simply supported beam.
4. To find out centre of gravity of regular and irregular lamina.
5. To verify the principle of moments using the bell crank lever apparatus
6. To determine the coefficient of static friction between two surfaces.
7. To find moment of inertia of a flywheel
8. To find the mechanical advantage, velocity ratio and efficiency in the case of inclined planes.
9. To find the mechanical advantage, velocity ratio and efficiency in the case of Screw Jack
10. To find the mechanical advantage, velocity ratio and efficiency in the case of worm and worm wheel
11. To find the mechanical advantage, velocity ratio and efficiency in the case of single winch Crab.
12. Graphical solutions for the following problems a. Resultant of Coplanar Non Concurrent force system:
 i. One problem with resultant as a force
 ii. One problem with resultant as a couple b. Equilibrium of Coplanar Non Concurrent force system:
 one Problem c. Friction: One Problem

INSTRUCTIONAL STRATEGY

This is a gateway subject to remaining course. While imparting theoretical instructions, teachers are expected to demonstrate the various apparatus and related concepts to the students by correlating theory and practical. It is further recommended that more emphasis should be laid in conducting practical work by individual students.
APPLIED MATHEMATICS LAB

Paper Code: ETVAS-557

Paper: Applied Mathematics Lab

<table>
<thead>
<tr>
<th>L</th>
<th>T/P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Based on theory courses ETVAS-507 (10-12 experiments)

2. Solution of algebraic and transcendental equation using Gauss–Seidal’s iteration method.
3. Solution of algebraic and transcendental equation using Finite difference method.
6. Calculation of probability using probability distributions.
7. Calculation of correlation coefficient.
8. Calculation of Numerical measures such as mean, variance, Skewness & Kurtosis.
10. Calculation of Rank Correlation.
11. Analysis of samples using ANOVA.
BUILDING CONSTRUCTION LAB

Paper Code: ETVCT-551
Paper: Building Construction Lab

List of Experiments:

1. Demonstration of tools and plants used in building construction
2. Study of layout of building
3. To construct brick bonds (English bond only) in one, one and half and two brick thick walls
4. To study and construct English bond for L junction
5. To study and construct English bond for T junction
6. To study and construct English bond for cross junction
7. To study and construct English bond for columns
8. Visit to construction site for showing the construction of foundations
9. Visit to construction site for showing the details of construction of masonry works
10. Visit to construction site for showing the details of Flooring: Laying of flooring on an already prepared lime concrete base
11. Visit to construction site for showing the details of plastering and pointing
12. Visit to construction site for showing the details of White and colour washing
13. Site visit to study Damp proof courses
14. Site visit to study use of special type of shuttering/cranes/heavy machines in construction work
15. Experts may be invited from field/industry for expert lectures

While imparting instructions in this subject, teachers are expected to take students to work site and explain constructional process and special details for various sub-components of a buildings. It is also important to make use of audio visual aids/video films (if available) to show specialized operations. The practical work should be given due importance and efforts should be made that each student should perform practical work independently. For carrying out practical works, institutes shall develop building yard where enough raw materials is made available for students to perform practical work.
SURVEYING I

Paper Code: ETVCT-553
Paper: Surveying-I

List of Experiments:

1. To study linear measurement instruments
2. Chaining, ranging and off-setting of a survey line
3. To find out the area using offset-survey
4. Traversing using chain surveying
5. To study prismatic compass
6. To measure the angles between the intersecting lines using compass
7. Traversing using chain and compass survey (recording, plotting and adjusting closing error)
8. To study dumpy level and leveling staves
9. To find out the reduced levels of different stations using Height of Instrument (HI) method.
10. To find out the reduced levels of different stations using rise and fall method.
11. To carry out leveling of a small area
12. To study plane table and its accessories
13. To find out the distance between different points using Radiation method
14. To find out the distance between different points using Intersection
15. To conduct plane table traversing

INSTRUCTIONAL STRATEGY

This is highly practice-oriented course. While imparting theoretical instructions, teachers are expected to demonstrate the use of various instruments in surveying; stress should be laid on correct use of various instruments so as to avoid/minimize errors during surveying. It is further recommended that more emphasis should be laid in conducting practical work by individual students. Technical visit to Survey of India, Northern Region and Great Trignometrical Survey (GTS), Dehradun may be considered and explored.
VOCATION WORKSHOP-I
(Discipline Specific)

Paper Code: ETVCT-555
Paper: Vocation Workshop-I

Objectives and Pre-requisites: To have a balanced overall development of student; To integrate theory with practice; To provide hand on experience about use of different tools and basic manufacturing practices; To develop general manual and machining skills in the students.

Learning outcomes: Students are able to respect and visualize dignity of labour, precision, safety at work place, team working and development of right attitude.

DETAILED CONTENTS (PRACTICAL EXERCISES)

Note: The students are supposed to come in proper workshop dress prescribed by the institute. Wearing shoes in the workshop(s) is compulsory. Importance of safety and cleanliness, safety measures and upkeep of tools, equipment and environment in each of the following shops should be explained and practiced. The students should prepare sketches of various tools/jobs in their practical Notebook.

1. Carpentry Shop
 1. Preparation of half lap joint
 2. Preparation of Mortise and Tenon Joint

2. Painting Shop
 1. Painting and polishing Practice on wooden items and metallic surfaces
 2. Practice of lettering by brush

3. Fitting Shop
 1. Demonstration & practice of simple operation of hack-sawing, demonstration and description of various types of blades and their specifications, uses and method of fitting the blade.
 2. Marking job, use of marking tools and measuring instruments.
 3. Filling a dimensioned rectangular or square piece of an accuracy of ± 0.5mm

4. Welding Shop
 1. Practice of striking arc bending and tacking while using electric arc welding set.
 2. Welding practice on electric arc welding for making uniform and straight weld beads and end preparation
 3. Preparation of butt joint by gas and arc welding.
 4. Preparation of T-joint by using electric arc welding.

References Books:

Scheme and Syllabi for B. Voc. (Construction Technology), w. e. f. batch 2015-16, approved in the 24th BOS of USET & AC Sub Committee Meeting of USET held on 31st July, 2015.
BUILDING PLANNING AND CONSTRUCTION TECHNOLOGY

INSTRUCTIONS TO PAPER SETTERS:

1. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 25 marks.
2. Apart from Question No. 1, rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, student may be asked to attempt only 1 question from each unit. Each question should be 12.5 marks.

MAXIMUM MARKS: 75

Objectives and Pre-requisites: To cover the study of building planning aspects of various residential, commercial and hospital buildings, planning of various projects. To learn and understand building byelaws and their applicability; principles of planning; importance of orientation and CAD; To understand the basics of construction technology; to study the significance of quality and safety; To study the nuances of concrete and concrete technology. To understand different stages of preparation of concrete & significant types of concretes; To study the concept of Non-destructive testing. The pre requisite knowledge on building components and construction is necessary.

Learning outcomes: After completing this course, student will be able to visualize the concept and applicability of building bye-laws and implement the same in planning and construction. Shall acquire the required planning skills and in a position to suggest plans for various buildings. Enhanced confidence and understanding of various aspects of construction technology, enables him in making better engineer. Knowledge of concrete, concreting and their types is immensely useful in construction sites. This subject helps in understanding the various subjects of this course in later stages.

UNIT-I
Building bye-Laws- Introduction, Terminology, Objectives, Floor area ratio (FAR) and Floor space Index (FSI), Principles underlying building byelaws, Minimum plot sizes and building frontage, Open spaces, Minimum standard dimensions of building elements. Provisions for - lighting & ventilation, safety from fire & explosions, means of access, drainage & sanitation and safety of works against hazards or accidents. Requirements for- off street parking, green belt and landscaping, special requirements for low income housing, Sizes of structural elements and Applicability of the bye-laws. Climate and its influence on building planning- Solar radiation, Temperature of air, Wind, Humidity, Precipitation, Climatic zones, Climate and comfort, Earth and its motion, Directions and their characteristics, Landscaping.

UNIT-II

UNIT-III
Safety- basic principles on safety, housekeeping, personal safety, fire protection, electrical safety, mechanical handling, transportation, scaffolds & ladders, excavation, formwork and concreting.

INSTRUCTIONS TO PAPER SETTERS:

1. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 25 marks.
2. Apart from Question No. 1, rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, student may be asked to attempt only 1 question from each unit. Each question should be 12.5 marks.

MAXIMUM MARKS: 75

Objectives and Pre-requisites: To cover the study of building planning aspects of various residential, commercial and hospital buildings, planning of various projects. To learn and understand building byelaws and their applicability; principles of planning; importance of orientation and CAD; To understand the basics of construction technology; to study the significance of quality and safety; To study the nuances of concrete and concrete technology. To understand different stages of preparation of concrete & significant types of concretes; To study the concept of Non-destructive testing. The pre requisite knowledge on building components and construction is necessary.

Learning outcomes: After completing this course, student will be able to visualize the concept and applicability of building bye-laws and implement the same in planning and construction. Shall acquire the required planning skills and in a position to suggest plans for various buildings. Enhanced confidence and understanding of various aspects of construction technology, enables him in making better engineer. Knowledge of concrete, concreting and their types is immensely useful in construction sites. This subject helps in understanding the various subjects of this course in later stages.

UNIT-I
Building bye-Laws- Introduction, Terminology, Objectives, Floor area ratio (FAR) and Floor space Index (FSI), Principles underlying building byelaws, Minimum plot sizes and building frontage, Open spaces, Minimum standard dimensions of building elements. Provisions for - lighting & ventilation, safety from fire & explosions, means of access, drainage & sanitation and safety of works against hazards or accidents. Requirements for- off street parking, green belt and landscaping, special requirements for low income housing, Sizes of structural elements and Applicability of the bye-laws. Climate and its influence on building planning- Solar radiation, Temperature of air, Wind, Humidity, Precipitation, Climatic zones, Climate and comfort, Earth and its motion, Directions and their characteristics, Landscaping.

UNIT-II

UNIT-III
Safety- basic principles on safety, housekeeping, personal safety, fire protection, electrical safety, mechanical handling, transportation, scaffolds & ladders, excavation, formwork and concreting.

Scheme and Syllabi for B. Voc. (Construction Technology), w. e. f. batch 2015-16, approved in the 24th BOS of USET & AC Sub Committee Meeting of USET held on 31st July, 2015.
UNIT-IV
Concrete and Concreting- definition of concrete, important properties of concrete both in plastic state and hardened state, Composition and fineness of cement, quality of fine and coarse aggregates, quality of water, use of admixtures, brief idea about- various stages of preparation of concrete, formwork- necessity and selection, materials used. Reinforcing steel, shotcrete, lightweight & heavyweight concrete, Ready- mixed concrete, fibre reinforced concrete and pre-stressed concrete, inspection and acceptance of finished concrete, Non- Destructive testing of Hardened concrete.

[T1, T2, T3][No. of Hrs: 11]

Text Books:

References Books:
[R2] Malik, R. S., “Civil Engineering Drawing”, Asia Publishing House
ESTIMATING & COSTING

Paper Code: ETVCT-504
Paper: Estimating & Costing

<table>
<thead>
<tr>
<th>L</th>
<th>T/P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

INSTRUCTIONS TO PAPER SETTERS:

1. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 25 marks.
2. Apart from Question No. 1, rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, student may be asked to attempt only 1 question from each unit. Each question should be 12.5 marks.

Objectives and Pre-requisites: Basic knowledge of building construction, surveying are the prerequisites and enhance ability of understanding of the subject. To study concepts of quantity surveying; To learn different types of estimates; to understand analysis of rates of various building operations; to study the details of contracting; to study billing and valuation. To prepare detailed estimate of a building;

Learning outcomes: Students gain the knowledge of estimating and costing which is an essential requirement of employability. Able to do the quantity surveying work independently. Ability to understand the contracting procedures, billing & valuation aspects further helps in better understanding of intricacies of Civil Engineers role. Improved ability to prepare material estimates for various construction and civil engineering projects.

UNIT-I
Introduction to quantity surveying/ estimating and its importance. Types of estimates; - Preliminary estimates, Plinth area estimate, Cubic rate estimate and Estimate per unit base. Detailed estimates- Definition- Stages of preparation – details of measurement and calculation of quantities and abstract. Units of measurement for various items of work as per BIS:1200. Rules for measurements. Different methods of taking out quantities – Centre line method and long wall & short wall method. Preparation of detailed estimate complete with detailed reports, specifications, abstract of cost and material requirement statements for a small residential building with flat roof.

[T1, T2][No. of Hrs: 11]

UNIT-II:
Analysis of rates: Detailed specifications of different types of building works from excavation to foundations, superstructure and finishing operation.

A. Steps in the analysis of rates for any item of work: Requirement of materials, labour, sundries, water charges and contractor’s profit.

B. Calculation of quantities of materials for:
 a. Cement mortars of different proportion
 b. Cement concrete of different proportion
 c. Brick/stone masonry in cement mortar
 d. Plastering and pointing
 e. White washing, painting
 f. R.C.C. work in slab, beams.

C. Analysis of Rates- Steps involved in the analysis of rates. Requirement of material, labour, sundries, contractor’s profit and overheads (D) Running and maintenance cost of construction equipment.

[T1, T2][No. of Hrs: 11]

UNIT-III:
Contracting: Meaning of contract, Qualities of a good contractor, Essentials of a contract, Types of contracts, their advantages, disadvantages and suitability, system of payment. Single and two cover-bids; tender, tender forms and documents, tender notice, submission of tender and deposit of earnest money, security deposit, retention money, maintenance period. Types of contracting firms/ construction companies. Introduction to CSR and calculation of cost based on premium on Common Schedule Rates (CSR).

[T1, T2][No. of Hrs: 11]

UNIT-IV

Valuation: Purpose of valuation, principles of valuation, Definition of various terms related to valuation like depreciation, sinking fund, salvage and scrap value, market value, fair rent, year’s purchase etc. Methods of valuation (i) replacement cost method (ii) rental return method.

[T1, T2][No. of Hrs: 11]

Scheme and Syllabi for B. Voc. (Construction Technology), w. e. f. batch 2015-16, approved in the 24th BOS of USET & AC Sub Committee Meeting of USET held on 31st July, 2015.
INSTRUCTIONAL STRATEGY
This is an applied engineering subject. Teachers are expected to provide working drawings for various civil engineering works and students be asked to calculate the quantities of materials required for execution of such works. Teachers should conceptualize analysis of rates for different types of works along with valuation of property.

Text Book(s):
[T1] B. N. Dutta- Estimating and costing in Civil Engg. UPSPD.

Reference Book(s):
[R2] PWD Account Code
[R3] Samuelson and Nardhaus-Economics, Mc Graw Hill
[R5] ‘Civil Engineering Building Drawing’ by Gurucharan Singh
OBJECTIVE: The objective of this course is to make students environment conscious. They will be exposed through the fundamental concepts of environment and ecosystem so that they can appreciate the importance of individual and collective efforts to preserve and protect our environment. This course must raise various questions in student’s mind that how our environment is inter-dependent on various factors and how human being must care for their natural surroundings.

UNIT-I
Environmental Studies: Ecosystems, Bio-diversity and its Conservation

(i) The Multidisciplinary Nature of Environmental Studies
Definition, scope and importance of Environmental Studies, Biotic and a biotic component of environment, need for environmental awareness.

(ii) Ecosystems
Concept of an ecosystem, structure and function of an ecosystem, producers, consumers and decomposers, energy flow in the ecosystem, ecological succession, food chains, food webs and ecological pyramids. Introduction, types, characteristic features, structures and function of the following ecosystem:
(a) Forest ecosystem
(b) Grassland ecosystem
(c) Desert ecosystem
(d) Aquatic ecosystem (ponds, streams, lakes, rivers, oceans, estuaries).

(iii) Bio-diversity and its Conservation
Introduction to biodiversity - definition: genetic, species and ecosystem diversity, Bio-geographical classification of India, Value of biodiversity: Consumptive use, productive use, social, ethical, aesthetic and option values, Biodiversity at global, national and local levels, India as a mega-diversity nation, Hot-spots of biodiversity, Threats to biodiversity: Habitat loss, Poaching of wildlife, man-wildlife conflicts, rare endangered and threatened species (RET) endemic species of India, method of biodiversity conservation: In-situ and ex-situ conservation.

UNIT-II
Natural Resources: problems and prospects
Renewable and Non-renewable Natural Resources; Concept and definition of Natural Resources and need for their management

- Forest resources: Use and over-exploitation, deforestation, case studies, timber extraction, mining, dams and their effects on forests and tribal people.
- Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems, Water conservation, rain water harvesting, watershed management.
- Mineral resources: Uses are exploitation, environmental effects of extracting and using mineral resources, case studies.
- Food resources: World food problems, changes causes by agriculture and over-grazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
- Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources, Urban problems related to energy, case studies.
- Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification.

INSTRUCTIONS TO PAPER SETTERS: MAXIMUM MARKS: 75
1. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 25 marks.
2. Apart from Question No. 1, rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, student may be asked to attempt only 1 question from each unit. Each question should be of 12.5 marks.
UNIT-III
Environmental Chemistry and Pollution Control
(i) Chemistry of Environment
(a) Green Technology: Principles of Green technology, Zero Waste Technology, Green Chemistry & Its basic principles, Atom Economy, Green Methodologies, clean development mechanisms (CDM), concept of environmental impact assessment,
(b) Eco-Friendly polymers: Environmental degradation of polymers, Biodegradable, Photo-biodegradable polymers, Hydrolysis & Hydrobiodegradable, Biopolymers & Bioplastics: polylactic acid, polyhydroxybutyrate, polycaprolactone, concept of bioremediation.
(ii) Environmental Pollution
Definition, types, causes, effects and control measures of (a) Air pollution, (b) Water pollution, (c) Soil pollution, (d) Marine pollution, (e) Noise pollution, (f) Thermal pollution, (g) Nuclear hazards. Pollution case studies. Solid waste and its management: causes, effects and control measures of urban and industrial waste.
Chemical toxicology-Terms related to toxicity, impact of chemicals (Hg, As, Cd, Cr, Pb) on environment. [T1], [R3] [No. of hrs. 11]

UNIT-IV
Disaster Management, Social Issues, Human Population and the Environment
(i) Disaster Management
Disaster management: floods, earthquake, cyclone and land-slides, nuclear accidents and holocaust, case studies.
(ii) Social Issues, Human Population and the Environment

Text Book(s):

References Books:
BASIC ELECTRONICS
(Open Elective-II)

Paper Code: ETVEC-506
Paper: Basic Electronics
L T/P C
3 0 3

INSTRUCTIONS TO PAPER SETTERS:
MAXIMUM MARKS: 75
1. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 25 marks.
2. Apart from Question No. 1, rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, student may be asked to attempt only 1 question from each unit. Each question should be of 12.5 marks.

Objective: Objective of the paper is to facilitate the student with the basics of electronic aspects that are required for his understanding and applications in their respective field of study. The pre-requisites are, to have a basic understanding of Applied Physics and Mathematics.

UNIT-I

UNIT – II
Theory of p-n Junction Diode: Diode Current Equation, Diode Resistance, Transition Capacitance, Diffusion Capacitance, (Elementary treatment only), Effect of Temperature on p-n Junction Diode, Switching Characteristics, Piecewise Linear Model,
Special Diodes: Zener Diode, Varactor Diode, Tunnel Diode, Photodiode, Light Emitting Diodes, Schottky Barrier Diode,
Applications of Diodes: Half-Wave Diode Rectifier, Full-Wave Rectifier, Clippers and Clampers (Elementary treatment only).

UNIT – III
Bipolar Junction Transistor: Introduction of transistor, construction, transistor operations, BJT characteristics, load line, operating point, leakage currents, saturation and cut off mode of operations, Eber-moll’s model.

UNIT – IV
Application of BJT: CB, CE, CC configurations, hybrid model for transistor at low frequencies, Introduction to FETs and MOSFETs.
Fundamentals of Digital Electronics: Digital and analog signals, number systems, Boolean algebra, logic gates with simple applications, logic gates, karnaugh maps.

Text Book(s):

Reference Book(s):

Scheme and Syllabi for B. Voc. (Construction Technology), w. e. f. batch 2015-16, approved in the 24th BOS of USET & AC Sub Committee Meeting of USET held on 31st July, 2015.
APPLIED PHYSICS

Paper Code: ETVPH-502
Paper: Applied Physics

L T C
3 0 3

INSTRUCTIONS TO PAPER SETTERS: MAXIMUM MARKS: 75
1. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 25 marks.
2. Apart from Question No. 1, rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, student may be asked to attempt only 1 question from each unit. Each question should be of 12.5 marks.

Objective: The objective of the paper is to facilitate the student with the basic understanding of Applied Physics aspects that are required for his understanding of electronics and Electromagnetics.

UNIT-I

UNIT-II
Polarization: Introduction, Uniaxial crystals, Double refraction, Nicol prism, Quarter and half wave plates, Theory of production of plane, circularly and elliptically polarized lights, Specific rotation, Laurent’s half shade polarimeter.

UNIT-III
Electromagnetic Theory: Gradient, Divergence, Curl, Gauss’ law, Ampere’s Law, Continuity equation, Maxwell’s equations (differential and integral forms), Significance of Maxwell’s equations, Poynting Theorem, Electromagnetic wave propagation in dielectrics and conductors.

UNIT-IV

Text Book(s):

Reference Book(s):
Objective: To provide exposure to the students in respects of the basics of different aspects of electrical engineering with emphasis on constructional, measurement and applications of various types of instruments and equipments.

UNIT – I: DC Circuits
Introduction of Circuit parameters and energy sources (Dependent and Independent), Mesh and Nodal Analysis, Superposition, Thevenin’s, Norton’s, Reciprocity, Maximum Power Transfer and Millman’s Theorems, Star-Delta Transformation and their Applications to the Analysis of DC circuits.

UNIT – II: A.C. Circuits

UNIT – III: Measuring Instruments
Basics of measuring instruments and their types, Working principles and applications of moving coil, moving iron (ammeter & voltmeter) and Extension of their ranges, dynamometer-type Wattmeter, induction-type Energy Meter, Two-wattmeter method for the measurement of power in three phase circuits, Introduction to digital voltmeter, digital Multimeter and Electronic Energy Meter.

UNIT – IV: Transformer and Rotating Machines
Fundamentals of Magnetic Circuits, Hysteresis and Eddy current losses, working principle, equivalent circuit, efficiency and voltage regulation of single phase transformer and its applications. Introduction to DC and Induction motors (both three phase and single phase), Stepper Motor and Permanent Magnet Brushless DC Motor.

Text Books:

Reference Books:
ENGINEERING MATERIALS
(Open Elective-II)

INSTRUCTIONS TO PAPER SETTERS: MAXIMUM MARKS: 75
1. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 25 marks.
2. Apart from Question No. 1, rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, student may be asked to attempt only 1 question from each unit. Each question should be 12.5 marks.

Objectives and Pre-requisites: To acquire proper knowledge about different construction materials and their applications. To have exposure about various construction materials as required in engineering. The students should learn the details of various construction materials such as stones, bricks and tiles, cement and cement based products, and lime, timber and wood based products, paint and varnishes metals and other miscellaneous materials and their applications.

Learning outcomes: Helps in making him as a better supervisor at construction sites/industries. Improved ability to identify and visualize various construction materials that are being used in construction and other industries. Enhanced knowledge of construction materials helps students in pursuing their careers in material testing field. This subject helps in understanding the various subjects related to different vocational courses in later stages.

UNIT I:

[No. of Hrs: 11]

UNIT II:

Lime: Introduction: Lime as one of the cementing materials. Definition of terms; quick lime, fat lime, hydraulic lime, hydrated lime, lump lime. Calcinations and slaking of lime IS classification of lime.

Definition - Properties and uses of Mortar. Types of mortar, cement & lime Mortar, Preparation of cement Mortar.

[No. of Hrs: 11]

UNIT III:

[No. of Hrs: 10]

UNIT IV:
Purpose and use of paints, Types, ingredients, properties and uses of oil paints, water paints and Cement paints. Types, properties and uses of varnishes, Trade name of different products. Metals - uses of ferrous and non-ferrous metals, Commercial forms of ferrous and non-ferrous metals. Plastics – Introduction and uses of various plastic products in buildings such as doors, water tanks and PVC pipes. Types uses and application of Fiber Sheets, insulating materials, Materials used in interior decoration works like POP, Water proofing compounds, fire resisting materials.

[No. of Hours: 12]
Text Book(s):

Reference Book(s):
[R4] Building Materials, Duggal, New Age Publication
BASIC ELECTRONICS LAB

Paper Code: ETVEC-556
Paper: Basic Electronics Lab
L
T/P
C

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

List of Experiments:

1. Introduction to C.R.O, Function Generator & Bread Board Kit & to generate different types of waveform with the help of Function Generator & to calculate their frequency, amplitude AC & DC voltage.
2. Identification & testing of Active & passive components
3. To plot V-I characteristics of a semiconductor diode & Calculate Static & Dynamic Resistance
4. To Study the Reverse characteristics of Zener diode
5. To Study the Rectifier circuit.
 a) Half Wave Rectifier
 b) Centre Tapped Rectifier.
 c) Bridge Rectifier.
6. To Study the output waveforms of different Filter Ckts of Rectifier.
7. To Plot Input & Output characteristics CB transistor.
8. To Plot Input & Output characteristics of CE transistor.
9. Realization of basic gates.
10. Implementation of Boolean functions (two or three variables).
11. Few experiments mentioned above to be performed on P-spice.
12. To develop a working model of any electronic circuit.

Note: Any 8-10 Experiments out of the list may be chosen.
APPLIED PHYSICS LAB

Paper Code: ETVPH-552
Paper: Applied Physics Lab

List of Experiments:

Instructions: Twelve Experiments are to be chosen from the list given below and rest of the Experiments (i.e., three in number) may be designed by the faculty at the respective institute according to the Syllabus being taught.

1. To determine the wavelength of sodium light by Newton’s Rings.
2. To determine the wavelength of sodium light by Fresnel’s biprism.
3. To determine the wavelength of sodium light using diffraction grating.
4. To measure small thickness of a piece of paper using Newton’s Rings technique.
5. To determine the refractive index of a prism using spectrometer.
6. To determine the dispersive power of prism using spectrometer and mercury source.
7. To determine the specific rotation of cane sugar solution with the help of half shade polarimeter.
8. To find the wavelength of He-Ne laser using transmission diffraction grating.
9. To determine the numeral aperture (NA) of an optical fibre.
10. To determine the e/m ratio of an electron by J.J. Thomson method.
11. To measure time period of a waveform and calculate its frequency and wavelength using CRO.
12. To measure the frequency of a sine-wave voltage obtained from signal generator and to obtain lissajous pattern on the CRO screen by feeding two sine wave signals from two signal generators.
13. To determine the frequency of A.C. mains by using Sonometer.
14. To determine the frequency of electrically maintained tuning fork by Melde’s method.
16. To study the charging and discharging of a capacitor and to find out the time constant.
17. To study the Hall effect.
18. To determine the energy band gap of a semiconductor by four probe method/or by measuring the variation of reverse saturation current with temperature.
19. To study the V-I characteristics of Zener diode.
20. To measure surface tension of different liquids using capillary rise method.
21. To measure coefficient of viscosity by Stoke’s method.

Text Book(s):
[T1] C. L. Arora ‘B. Sc. Practical Physics’ S. Chand
BASICS OF ELECTRICAL ENGINEERING LAB

Paper Code: ETVEE-558
Paper: Basics of Electrical Engineering

List of Experiments:

1. To Design the circuit for a given load and selection of its various Components and instruments from the safety point of view
2. Study and applications of CRO for measurement of voltage, frequency and phase of signals.
3. Connection of lamp by
 (1) Single Switch Method
 (2) Two-way Switch Method
 OR
 Performance comparison of fluorescent tube & CFL Lamp.
4. To Verify Thevenin’s & Norton’s Theorem
 OR
 To Verify Superposition & Reciprocity Theorem
 OR
 To Verify Maximum Power Transfer Theorem
5. To Measure Power & Power Factor in a Single-Phase A.C Circuit using Three Ammeters or three Voltmeters.
7. To study of Resonance in a series R-L-C or Parallel R-L-C Circuits.
8. To perform open circuit and short circuit test on 1-phase transformer.
9. Starting, Reversing and speed control of DC shunt Motor
10. Starting, Reversing and speed control of 3-phase Induction Motor
11. To Study different types of Storage Batteries & its charging system.
12. To Study different types of earthing methods including earth leakage circuit breaker (GFCI)

Note:- Any 8-10 Experiments out of the list may be chosen.
ENGINEERING MATERIALS LAB

<table>
<thead>
<tr>
<th>Paper Code: ETVME-560</th>
<th>L</th>
<th>T/P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper: Engineering Materials Lab</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

List of Experiments:

1. To determine the crushing strength of bricks
2. To determine the water absorption of bricks.
3. To conduct field tests on cement.
4. To determine fineness (by sieve method) of cement.
5. To determine normal consistency of cement.
6. To determine initial and final setting times of cement.
7. To determine soundness of cement.
8. To determine compressive strength of cement.
9. Field visit to study different types of cements that are used in construction industry
10. Field visit to study different types of bricks that are used in construction
11. Field visit to study use of timber in construction
12. A report on use of plastic materials for various purposes in buildings
13. Field visit to study different types of tiles used in construction industry
14. Field visit to study different type of paints used in buildings
15. A report on new and latest material being used in construction industry.

Teachers are expected to physically show various materials while imparting instructions. Field visits should be organized and active participation of students shall be encouraged.
CIVIL ENGINEERING DRAWING LAB

Paper Code: ETVCT-552

Paper: Civil Engineering Drawing Lab

Objectives and Pre-requisites: Drawing is the language of engineers and technicians. To Read and interpret engineering drawing as required in their day-to-day responsibility. The pre-requisite knowledge on building components and construction is necessary. The course is aimed at developing basic graphic skills so as to enable them to use these skills in preparation of engineering drawings, their reading and interpretation.

Learning outcomes: Able to draw the plan of different components and fixtures of buildings. Capable of preparing plans, sections and elevations of different engineering units as per requirements. Improves the ability to think and work in accordance with the client/project requirements and needs. This subject helps in better understanding of the concepts of CAD in later stages of the course.

DETAILED CONTENTS

1. Drawing of different conventions for materials in section, conventional breaks for shafts, pipes, rectangular, square, angle, channel, rolled sections
2. Elevation, sectional plan and sectional side elevation of flush door & glazed door
3. Elevation, section plan and sectional side elevation of paneled window and glazed window
4. Details of spread footing foundations, load bearing and non-load bearing wall for given thickness of walls with the help of given data or rule of the thumb, showing offsets, position of DPC. The details of the concrete and brick plinth protection have to be shown in the drawing.
5. Plans of 'T' and Corner junction of walls of 1 Brick, 1-1/2 Brick and 2 brick thick in English bond
6. Wooden roof truss showing details of joints, fixation of roof coverings, eaves and gutters- King post truss
7. Wooden roof truss showing details of joints, fixation of roof coverings, eaves and gutters- queen post truss
8. Drawing plan and section of a dog legged stair (excluding reinforcement details)
9. Drawing plan, elevation of a small building by measurement.
10. Drawing detailed plan, elevation and section of a two room residential building from a given line plan, showing details of foundations, roof and parapet
11. Drawing of a small single storey building showing position of sanitary fittings house drainage and electrical fittings
12. Drawing of floors (concrete flooring, ceramic/vitrified tile flooring)
13. Drawing details of damp proofing arrangement of roofs, basement floors and walls as per BIS Code
14. Drawing the plan and elevation of an office building
15. Drawing the plan and elevation of primary health care centre
16. Drawing the plan and elevation of post office
ESTIMATING & COSTING LAB

Paper Code: ETVCT-554
Paper: Estimating & Costing Lab

List of Experiments:

A. Detailed estimate for building taking of quantities for all items of works in the following types of building:

1) A small residential building with two / three rooms with RCC roofs.
2) Two storied building (frame structure) with RCC roofs.
3) Cottages with sloped RCC roofs.
4) Industrial buildings with AC / GI sheet roof with steel trusses.
5) Community hall with columns and T-Beams.
6) Open well with masonry steining.
7) Septic tanks with dispersion trench / soak pit.
8) R.C.C. slab culvert.
9) Pipe culvert
10) Water bound Macadam Road
11) Rain water systems in the buildings
 a. Shallow well
 b. Percolation Pit with bore.

B. Rate analysis for following item of works.

 a. Brick work for super structures.
 b. PCC work for footing.
 c. RCC work for beam. Column and slabs.
 d. Plaster work
 e. White/Colour washing

C. Taking out quantities for embankment and canals

INSTRUCTIONAL STRATEGY

This is an applied engineering subject. Teachers are expected to provide working drawings for various civil engineering works and students be asked to calculate the quantities of materials required for execution of such works. Teachers should conceptualize analysis of rates for different types of works along with valuation of property.
ENVIRONMENTAL SCIENCE LAB/ FIELD WORK
(Common to All Disciplines)

Paper Code: ETVEN-552
Paper: Environmental Science Lab/ Field Work

<table>
<thead>
<tr>
<th>List of Experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Determination of pH, conductivity and turbidity in drinking water sample.</td>
</tr>
<tr>
<td>2. Determination of pH and conductivity of soil/sludge samples.</td>
</tr>
<tr>
<td>3. Determination of moisture content of soil sample.</td>
</tr>
<tr>
<td>4. Determination of Total Dissolved Solids (TDS) of water sample.</td>
</tr>
<tr>
<td>5. Determination of dissolved oxygen (DO) in the water sample.</td>
</tr>
<tr>
<td>6. Determination of Biological oxygen demand (BOD) in the water sample.</td>
</tr>
<tr>
<td>7. Determination of Chemical oxygen demand (COD) in the water sample.</td>
</tr>
<tr>
<td>8. Determination of Residual Chlorine in the water sample.</td>
</tr>
<tr>
<td>10. Determination of carbon dioxide in the water sample.</td>
</tr>
<tr>
<td>11. Determination of nitrate ions or sulphate ions in water using spectrophotometer.</td>
</tr>
<tr>
<td>13. Base catalyzed aldol condensation by Green Methodology.</td>
</tr>
<tr>
<td>15. To determine the concentration of particulate matter in the ambient air using High Volume Sampler.</td>
</tr>
</tbody>
</table>

P.S.: For better understanding of various aspects of environment visits to local areas, depending upon easy access and importance may be planned to any nearby river, forest, grassland, hills and students should write a report based on their observations.

Suggested Books:

PROJECT-I

Objectives: The practical training cum project work is intended to place students for project oriented practical training in actual work situations for the stipulated period with a view to:

a) Develop understanding regarding the size and scale of operations and nature of field work in which students are going to play their role after completing the courses of study.
b) Develop understanding of subject based knowledge given in the class room in the context of its application at work places
c) Develop first-hand experience and confidence amongst the students to enable them to use and apply polytechnic/institute based knowledge and skills to solve practical problems in the world of work.
d) Develop special skills and abilities like interpersonal skills, communication skills, attitudes and values.

This practical training cum project work should not be considered as merely conventional industrial training in which students are sent at work places with minimal supervision. This experience is required to be planned and supervised on regular basis by the polytechnic faculty. For the fulfilment of above objectives, polytechnic may establish close linkage with 8-10 relevant organization for providing such an experience. It is necessary that each organization is visited well in advance and activities to be performed by student are well defined. The chosen activities should be such which are of curricular interest to students and of professional value to industrial/field organizations. Each teacher is expected to supervise and guide 5-6 students. Effort should be made to identify actual field problems to be given as project work to the students. Project selected should not be too complex which is beyond the level of the students. The placement of the students for such a practical cum project work should match with the competency profile of students and the project work assigned to them. Students may be assessed both by industry and polytechnic faculty.
VOCACTION WORKSHOP-II

Paper Code: ETVCT-562
Paper: Vocation Workshop-II
L T/P C
0 4 4

Objectives and Pre-requisites: To have a balanced overall development of student; To integrate theory with practice; To provide hand on experience about use of different tools and basic manufacturing practices; To develop general manual and machining skills in the students.

Learning outcomes: Students are able to respect and visualize dignity of labour, precision, safety at workplace, team working and development of right attitude.

DETAILED CONTENTS (PRACTICAL EXERCISES)

Note: The students are supposed to come in proper workshop dress prescribed by the institute. Wearing shoes in the workshop(s) is compulsory. Importance of safety and cleanliness, safety measures and upkeep of tools, equipment and environment in each of the following shops should be explained and practiced. The students should prepare sketches of various tools/jobs in their practical Notebook.

Sheet Metal Shop
1. Shearing and riveting practice on G.I.
2. Practice on making single riveted lap joint/double riveted lap Joint.
3. Practice on making single cover plate chain type, seam joint and riveted butt joint

Smithy Shop
1. Job work to forge a L-hook.
2. Job work to prepare a job involving upsetting process
3. Job work to forge a chisel
4. Job work to prepare a cube from a M.S. round by forging method.

Electrical shop
1. Use of Megger for testing wiring
2. Study of protection devices- fuse, MCB, ELCB/RCCB etc
3. Measurement of earth resistance
4. Study of various home appliances
5. Study of different types of earthing
6. Field visit to electrical substation- indoor/ outdoor
7. Study and hands on training on single and three phase induction motor
8. Study of firefighting equipment

References Books: