Confidential For Members only 11810

GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY

TWENTY SIXTH MEETING

OF THE ACADEMIC COUNCIL

DATE TIME VENUE

19.01.2009 12 · noon CONFERENCE ROOM

MINUTES

KASHMERE GATE, DELHI-110403

TWENTY SIXTH MEETING OF THE ACADEMIC COUNCIL HELD ON 19TH JANUARY 2009

11710

ė

INDEX

	Destinutoro	Page No.
Item No.	Particulars	A DAD
26.1	To confirm the Minutes of 25 th meeting of the Academic Council held on 10 th November 2008	5
26.2	Action Taken Report on Minutes of 25 th Meeting of the	5
26.3	To consider the Award of Degree that are to be conferred to in-person and Degree to be conferred in absentia in the fifth convocation of the University scheduled to be held on January 30, 2009.	5
26.4	Admission Brochures for the year 2009-10	5
26.5	To approve the revised eligibility criteria for M.Sc. (Forensic Science) at Lok Nayak Jay Narayan Institute of Criminology & Exercise Science, Robini for the session 2009-10	6
26.6	To approve the migration of two students of IV Semester (Batch 2005-08) BBA (Gen) programme from Management Education & Research Institute (MERI) to any other institution, affiliated with GGSIP University.	6
26.7	To consider the guidelines of the scheme for providing financial assistance to the institution for organizing Sumposium (Conference / Seminar / Workshop	7
26.8	To report the approvals granted by the Vice-Chancellor to the Schemes of Examinations and Syllabi finalized as per the procedure laid down in the Minutes of the Agenda Item No.22.11 of the Twenty Second Meeting of the Academic Council held on May 29, 2007	7
26.9	To consider the guidelines of scheme of Travel Grant for providing financial assistance to the students of GGSIP University for presenting Research papers/ abstracts in the National and International Conference	8
26.10	To report about the approval of Scheme of Examination and Sylabi of various MBA programmes in University School of Management Studies by the Vice Chancellor	8
26.11	To approve Scheme of Examination and Syllabi of B.Tech.	9
26.12	To approve Scheme of Examination & Syllabi of various	9
26.13	To approve Scheme of Examination & Syllabl or various courses being conducted at USAP and Modification in respect of Conduct and Evaluation of Examination for 5 years full time programme leading to B.Arch. programme following the Annual System of Examination	10
26.14	Any other item with the permission of the Chair	10

It was noted that the above Schemes of Examination and Syllabi have been approved by the Vice Chancellor as per the powers delegated vide Academic Council's decision no.25.13.

ĩ

108/0

It was, however, observed by Director (Academic Affairs) that a Post Graduate programme of two years duration should have at least 100 credits whereas the MBA (Real Estate) Programme is having only 85 credits. Dean, USMS was requested to redraft the scheme and syllabi of MBA (Real Estate) Programme for the students who will take admission in future for the existing MBA (Real Estate). However, for the existing students of MBA (Real Estate Programme), Scheme of Examination & Syllabi already approved shall continue.

Agenda Item No. 26.11 To approve Scheme of Examination and Syllabi of B. Tech. (Biotechnology) and M. Tech. (Biotechnology).

The Academic Council noted the scheme of Examination and Syllabi presented before it.

It was noted that the above Schemes of Examination and Syllabi have been approved by the Vice Chancellor as per the powers delegated vide Academic Council's decision no.25.13.

Agenda Item No. 26.12 To approve Scheme of Examination & Syllabi of various courses being conducted at USIT.

The Academic Council noted the following Schemes of Examination and Syllabi presented before it:

(i)	M. Tech. (VLSI)	-	C-DAC, NOIDA
(ii)	MCA (SS) for lao PDR students	-	USIT
(iii)	M. Tech. (IT) – Regular	-	USIT
(iv)	M. Tech. (CSE) – Regular	-	USIT
(v)	B. Tech. / M. Tech. (CSE) – Regular	-	USIT
(vi)	B. Tech. / M. Tech. (ECE) – Regular	ſ -	USIT

9.

It was noted that the above Schemes of Examination and Syllabi have been approved by the Vice Chancellor as per the powers delegated vide Academic Council's decision no.25.13.

Agenda Item No. 26.13To approve Scheme of Examination & Syllabi of
various courses being conducted at USAP and
Modification in respect of Conduct and Evaluation of
Examination for 5 years full time programme leading
to B. Arch. Programme following the Annual System
of Examination.

The Academic Council noted the scheme of Examination and Syllabi presented before it.

It was noted that the above Schemes of Examination and Syllabi have been approved by the Vice Chancellor as per the powers delegated vide Academic Council's decision no.25.13.

Agenda Item No. 26.14 Any other item with the permission of the Chair.

In the end, the Academic Council resolved to place on record the appreciation for Prof. K. K. Aggarwal, the founder Vice Chancellor of the University for the contribution made by him in establishing this University and taking it to the level which it has attained. All the members of the Academic Council assured the new Vice Chancellor their utmost cooperation and wished him a great success during his tenure as the Vice Chancellor of this University.

Meeting ended with a vote of thanks to the Chair.

(Vinod K. Jain) Registrar / Secretary to the Academic Council

SCHEME OF EXAMINATION

&

SYLLABI

for

Bachelor / Master of Technology (Dual Degree) Computer Science & Engineering

Offered by

University School of Information Technology

1ST SEMESTER TO 8TH SEMESTER

Guru Gobind Singh Indraprastha University Kashmere Gate, Delhi – 110 403 [INDIA] www.ipu.ac.in

Approved by the Academic Council in its 26th meeting held on 19-01-2009 vide agenda item 26.12 w.e.f. 2009

Vision of the School

Create high-quality engineering professionals

Mission of the School

To serve humanity by creating professionally competent, socially sensitive engineers with high ethical values who can work as individuals or in groups in multicultural global environments.

Programme Outcomes

- 1. *Engineering Knowledge* (PO01): Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem Analysis** (PO02): Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- 3. **Design/Development of Solutions (PO03)**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct Investigations of Complex Problems** (PO04): Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions for complex problems:
 - that cannot be solved by straightforward application of knowledge, theories and techniques applicable to the engineering discipline as against problems given at the end of chapters in a typical text book that can be solved using simple engineering theories and techniques;
 - b. that may not have a unique solution. For example, a design problem can be solved in many ways and lead to multiple possible solutions;
 - c. that require consideration of appropriate constraints / requirements not explicitly given in the problem statement such as cost, power requirement, durability, product life, etc.;
 - d. which need to be defined (modelled) within appropriate mathematical framework; and
 - e. that often require use of modern computational concepts and tools, for example, in the design of an antenna or a DSP filter.
- 5. *Modern Tool Usage* (PO05): Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- 6. **The Engineer and Society** (PO06): Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and Sustainability** (**PO07**): Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. *Ethics* (**PO08**): Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. *Individual and Team Work* (PO09): Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication** (**PO10**): Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project Management and Finance** (**PO11**): Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. *Life-long Learning* (PO12): Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

Bachelor of Technology (Computer Science and Engineering) Programme Education Objectives (PEO)

PEO 1: Our students will apply their knowledge and skills to succeed in their careers and/or obtain advanced degrees.

PEO 2: Our students will behave ethically and responsibly, and will remain informed and involved as full participants in their profession and society.

PEO 3: Our students will creatively solve problems, communicate effectively, and successfully function in diverse and inclusive multi-disciplinary teams.

PEO4 4: Our students will apply principles and practices of computing grounded in mathematics and science to successfully complete hardware and/or software-related engineering projects to meet customer business objectives and/or productively engage in research.

Programme Specific Outcomes (PSO)

On completion of the programme of study, the students will have the ability to:

PSO 1: Identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.

PSO 2: Apply engineering analysis & design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.

PSO 3: Communicate effectively with a range of audiences.

PSO 4: Recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.

PSO 5: Function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.

PSO 6: Develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.

PSO 7: Acquire and apply new knowledge as needed, using appropriate learning strategies.

PEO/PO	PO01	PO02	PO03	PO04	PO05	P006	P007	PO08	PO09	PO10	PO11	PO12
PEO 1	3	1	1	1	1	1	1	1	1	1	1	3
PEO 2	1	-	-	-	-	3	3	3	-	-	-	3
PEO 3	3	3	3	3	3	2	2	1	1	3	3	-
PEO 4	3	3	3	3	3	-	-	-	1	1	3	-

PEO to PO Mapping

(scale 1: low, 2: Medium, 3: High)

PSO to PO Mapping

PSO/PO	PO01	PO02	PO03	PO04	PO05	P006	PO07	PO08	PO09	PO10	PO11	PO12
PSO 1	3	-	-	-	-	-	-	-	-	-	-	3
PSO 2	-	3	3	3	3	3	3	-	-	-	-	-
PSO 3	-	-	-	-	-	3	-	-	3	3		-
PSO 4	-	-	-	-	-	3	3	3	1	-	-	-
PSO 5	-	-	-	-	-	-	-	1	3	1	3	-
PSO 6	1	2	2	3	3	1	1	1	-	-	-	3
PSO 7	-	-	-	-	-	-	-	-	-	-	-	3

(scale 1: low, 2: Medium, 3: High)

GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY DELHI Bachelor / Master of Technology (Dual Degree)

Computer Science & Engineering

First Sem	ester				
Code	Paper ID	Paper	L	T/P	Credits
Theory P	apers	·	•	•	
HS101	98101	Communication Skills-I	2	1	3
BA103	99103	Chemistry – I	2	1	3
IT 105	15105	Introduction to Computers	3	-	3
IT 107	15107	Electrical Science	3	1	4
BA109	99109	Mathematics – I	3	1	4
BA111	99111	Physics – I	2	1	3
HS119*	98119	Impact of Science & Technology on Society – I	1	-	1
Practical/	Viva Voce		1	I	I
BA151	99151	Chemistry-I Lab	-	2	1
BA153	99153	Physics-I Lab	-	2	1
IT155	15155	Computer Lab	-	2	1
IT157	15157	Engineering Graphics-I	-	2	1
IT159	15159	Electrical Science Lab	-	2	1
		Total	16	15	26

First Semester

*NUES

Second Semester

Second Se	mester				
Code	Paper	Paper	L	T/P	Credits
	ID				
Theory Pa	pers				
HS102	98102	Communication Skills – II	1	2	3
IT104	15104	Engineering Mechanics	3	1	4
BA108	99108	Mathematics – II	3	1	4
BA110	99110	Physics-II	2	1	3
BA114	99114	Statistics Theory of Probability and	2	1	3
		Linear Programming			
BA118	99118	Chemistry-II	2	1	3
HS126*	98126	Impact of Science & Technology on	1	-	1
		Society – II			
IT128	15128	Data Structures	3	0	3
Practical/	Viva Voce				•
BA156	99156	Physics –II Lab	-	2	1
BA162	99162	Chemistry –II Lab	-	2	1
IT152	15152	Data Structure Lab	-	2	1
IT154	15154	Engineering Graphics-II lab	-	2	1
		Total	17	15	28

*NUES

GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY

DELHI

Bachelor / Master of Technology (Dual Degree) Computer Science & Engineering

Third Semester

Third S	Semester				
Code	Paper ID	Paper	L	T/P	С
Theory	Papers				
IT201	15201	Computational Methods	3	1	4
IT203	15203	Circuits and Systems	3	1	4
IT205	15205	Electronic Devices and Circuits	3	1	4
IT207	15207	Object Oriented Programming Using C++	3	1	4
IT209	15209	Computer Graphics	3	1	4
IT211	15211	Database Management Systems	3	1	4
Practic	al/Viva V	oce	·		
IT251	15251	Electronic Devices and Circuits Lab.	-	2	1
IT253	15253	Computation Lab.	-	2	1
IT255	15255	Object Oriented Programming Lab.	-	2	1
IT257	15257	Computer Graphics Lab.	-	2	1
IT259	15259	DBMS Lab.	-	2	1
Total			18	16	29

GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY

DELHI

Bachelor / Master of Technology (Dual Degree) Computer Science & Engineering

Fourth S	emester				
Code	Paper ID	Paper	L	T/P	C
Theory F	Papers			•	
IT202	15202	Java Programming	3	1	4
IT204	15204	Multimedia Applications	3	1	4
IT206	15206	Switching Theory and Logic Design	3	1	4
MS208	39208	Organization Behaviour	3	1	4
IT210	15210	Foundations of Computer Science	3	1	4
IT212	15212	Software Engineering	3	1	4
Practical	S	·		•	
IT252	15252	Java Programming Lab.	-	2	1
IT254	15254	Multimedia Lab.	-	2	1
IT256	15256	Switching Theory and Logic Design Lab.	-	2	1
IT258	15258	Software Engineering Lab.	-	2	1
Total			18	14	28

Fourth Semester

Fifth Se	mester				
Code	Paper ID	Paper	L	T/P	C
IT301	15301	Theory of Computation	3	1	4
IT303	15303	Analog and Digital Communication	3	1	4
IT305	15305	Computer Architecture	3	1	4
IT307	15307	Digital Signal Processing	3	1	4
IT309	15309	Object Oriented Software Engineering	3	1	4
IT311	15311	Digital Design Using VHDL	3	1	4
Practica	ls				
IT351	15351	Analog & Digital Communication Lab.	-	2	1
IT353	15353	Digital Signal Processing Lab.	-	2	1
IT355	15355	Digital Design Lab.	-	2	1
IT357*	15357	Summer Training (Conducted at the end of the 4 th	-	2	1
		Semester) Report, Seminar and Viva - Voce			
Total	•	•	18	14	28
*NUFS					•

Fifth Semester

*NUES

Sixth S	emester				
Code	Paper ID	Paper	L	T/P	C
Theory	Papers				
IT302	15302	Microprocessors	3	1	4
IT304	15304	Computer Networks	3	1	4
IT306	15306	Algorithm Analysis and Design	3	1	4
IT308	15308	Compiler Design	3	1	4
IT310	15310	Operating Systems	3	1	4
Practic	als				
IT352	15352	Microprocessor Lab.	-	2	1
IT354	15354	Algorithm Analysis & Design Lab.	-	4	2
IT356	15356	Compiler Design Lab.	-	2	1
Total			15	13	24

Sixth Semester

Seventh Semester

Seventh	Semester			1	
Code	Paper ID	Paper	L	T/P	C
Theory 2	Papers			1	
IT401	15401	Advanced Computer Networks	3	1	4
IT403	15403	Software Testing	3	1	4
Electives	s (Choose	any two)		•	
IT405	15405	Distributed Systems	3	1	4
IT407	15407	Artificial Intelligence	3	1	4
IT409	15409	Simulation and Modeling	3	1	4
IT411	15411	Digital Image Processing	3	1	4
IT413	15413	Front End Design Tools and Web Technologies	3	1	4
IT415	15415	Advanced Java Programming	3	1	4
Practica	ls			•	
IT451	15451	ACN Lab.	-	2	1
IT461	15461	Software Testing Lab.	-	2	1
IT455	15455	Laboratory work for electives	-	2	1
IT457	15457	Minor Project	-	-	7
IT459*	15459	Summer Training (Conducted at the end of the 6 th	-	-	1
		Semester) Report, Seminar and Viva - Voce			
Total		•	12	10	25
*NUES			•		

GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY

DELHI

Bachelor / Master of Technology (Dual Degree) Computer Science & Engineering

Eighth S	emester				
Code	Paper ID	Paper	L	T/P	C
HS402*	98402	Technical Writing	2	-	2
Electives	(Choose a	any two)			
IT404	15404	Advanced Computer Architecture	3	1	4
IT406	15406	Control Systems	3	1	4
IT408	15408	Advanced Database Management Systems	3	1	4
IT410	15410	Soft Computing	3	1	4
IT412	15412	Natural Language Processing	3	1	4
IT414	15414	Windows .Net Framework and C# Programming	3	1	4
Practical	s			•	•
IT452	15452	Major Project (Report)		-	8
IT454	15454	Viva – Voce (On major project)		-	2
IT456*	15456	Seminar and progress report		-	1
IT458	15458	Laboratory work for electives		2	1
Total		-	8	4	22
*NUES					

Eighth Semester

Note:

1. '*' Marked papers are NUES papers.

2. Total number of credits in BTECH(CSE) = 210

The minimum number of credits to be earned for the award of the degree is = 200
 No student is allowed to enter in to 9th Semester till student becomes eligible to be awarded

 No student is allowed to enter in to 9th Semester till student becomes eligible to be awarded B.Tech(CSE)

Code: HS 101		L	T/P	С
Paper ID: 98101	Paper: Communication Skills – I	2	1	1

- I. Remedial Grammar
 - (a) Simple sentences their phrase structure
 - (b) Parts of speech
 - (c) Tense and concord
 - (d) Gerunds, Participles & Infinitives
 - (e) Complex and Compound sentences (Use of connectives)
 - (f) Conditional clauses
 - (g) Question tags & short responses
 - (h) Common errors
- II. Vocabulary and Usage
 - (a) Synonyms & Antonyms
 - (b) One word substitutions
 - (c) Words often confused
 - (d) Idioms / Idiomatic expressions
 - (e) Foreign Phrases (Greek and Latin)
- III. Presentation of Technical Information: Technical description of
 - (a) Simple objects, tools, appliances
 - (b) Processes and operations
 - (c) Scientific principles
- IV. Composition:
 - (a) Comprehension Unseen passages
 - (b) Dialogues Creation of mock situations.
 - (c) Debates Discussing the pros and cons of a given topic.
 - (d) Thematic Appreciation Exercises / Development of situational outlines.
- V. Prose

Selected prose pieces from prescribed texts.

Paper Code: BA-103		L	T/P	С
Paper ID: 99103	Paper: Organic Chemistry	2	1	3

- 1. **Water:** Specifications for water, Analysis of water-Alkanity, hardness and its determination (EDTA Method only), water for domestic use, Water-softening-Lime-Soda process, Ion-exchanger polished water, Boiled-feed water, boiler problems-scale, sludge priming and foaming, caustic embrittlement and corrosion, their causes and prevention, removal of silice, removal of dissolved gases, carbonates phosphates conditioning, colloidal conditioning, Calgon treatment, conditioning, Numerical problems of Alkanity, hardness Lime-Soda process and EDTA method.
- 2. **Fuels:** Definition and classification, combustion and chemical principles involved in it. Calorific value: Gross and Net Calorific values and their determination by Boy's Gas Calorimeter and Bomb Calorimeter.
 - i) Solid fuels: Proximate and ultimate analysis of coal and their importance. Carbonization: High and Low temperature carbonization, coke, its manufacture by the Otto Hoffman Oven and uses.
 - Liquid fuels: Converison of coal into liquid fuels (Bogius process & Fischer Tropsch process and mechanism, Petroleum: its chemical composition and Fractional distillation, Cracking of heavy oil residues: thermal cracking and catalytic cracking, Knocking-chemical structure and knocking: Octane and Cetane number and their significance, Power alcohol.
 - iii) Gaseous Fuels: Natural gas, producer gas, water gas, carburetted water gas, coal gas and oil gas, fuel and fuel gases and their analysis by Orsat's apparatus.
 - iv) Numerical on calorific value, combustion, Proximate and ultimate analysis of coal and fuel gas analysis.
 - v) Nuclear Fuels: Nuclear reactions, nuclear fission and nuclear fusion, Nuclear reactor.
- 3. **Polymers:** Basic concepts & Terminology, such as monomers, Polymers, functionality, Thermoplastics, Thermosets, Linear, Branched, cross linked polymers etc. Different definitions of molecular weight's viz. Mw, Mn, Mv and then determinations, Industrial applications of polymers, Addition, condensation and Ionic polymerization's solutions of polymers, good solvents, & bad solvent, solubility parameter, solutions viscosity and determination of intrinsic viscosity.
- 4. **Corrosion:** Definition and types of corrosion, Laws of oxide film 'growth (Linear, parabolic and logarithmic), different theories of corrosion, Atmospheric corrosion, Stress corrosion, water-line, pitting and soil corrosion.

Protective measures against corrosion:

- i) Modification of environment
- ii) Modification of the properties of the metal
- iii) Use of protective coatings
- iv) Cathodic Protection
- v) Material selection and design

Code : IT105 Paper ID:15105	Paper: Introduction To Computers	L 3	T/P 0	C 3
applicat Data rep and thei numbers devices contemp level des	tion: Overview of computer organization and historica ions in various fields of science and management. presentation: Number systems, character representation code r inter conversions. Binary arithmetic, Floating point arithm s. Data Storage: Primary and Secondary storage, Introduc such as keyboard, mouse, printers, disk files, floppies et porary, Operating Systems such as DOS, Windows'95, U scription). Introduction to organization and architecture of n . Introduction to E-mail, ftp, login and other network service	s, Binary netic, sig ttion to c. Conce NIX etc nainfram	y, hex, octa ned and un various co ept of com . (only bri e, mini and	al codes nsigned omputer oputing ief user d micro
Algorith sequenti program Introduc	tion to Programming: Concept of algorithms, Flow muss such as how to add ten numbers, roots of a quadra ally following up the steps of a algorithm.Notion of programing languages, Structure of programs, Object codes, comp tion to the Editing tools such as vi or MS-VC editors. Con- es, kilo, mega and gigabytes, Concepts of character represer	itic equa am, prop oilers. cepts of	tion. Con grammabil	lity and
that the availabi program	nming using C: The emphasis should be more on progra language itself. The C programming language is being cho lity of the compilers, books and other reference materials. E b. Dissection of the program line by line, Concepts of Varia tion calls from the library (printf for example) C data types, int, char, float etc.	sen mair xample	nly because of some si	e of the mple C
0 0 0	C expressions, arithmetic operations, relational and logic op C assignment statements, extension of assignment to the input output using getchar and putchar, exposure to the scant C statements, conditional executing using if, else. Optional	operati and prin	ons. C pri ntf function	ıs.
0	statements may be mentioned. Concepts of loops, example of loops in C using for, while continue may be mentioned.			
0 0	One dimensional arrays and example of iterative programs Use in matrix computations. Concept of Sub-programming, functions, Example of func			
o	mainly for the simple variables. Pointers, relationship between arrays and pointers, Argume			
0	Array of pointers, Passing arrays as arguments. Strings and C string library Structures and Unions. Defining C structures, passing str	rings as	arguments	<u>.</u>
0	programming examples. File I/O, Use of fopen, fscanf and fprintf routines			

	IT107 ID: 15107	Paper: Electrical Science	L 3	T/P 1	C 4
I.	Properties of Conductors and Ins Basic laws of Electrical Engine Temperature Resistance Coeffi	eering			
Π.	D.C. Circuits Network theorems and applicat Division of Current Potentiometer Circuit Parameters Energy and Power Superposition Thevenin and Reciprocity theor Star Delta Formations				
Ш.	Alternating Currents Peak, Average and RMS values Power and Power factor Resistance, Inductance and Car Resonance Q Factor				
IV.	Electromagnetism Magnetic Induction Permeability Hysteresis				
V.	Measuring Instruments Moving Coil and Moving Iron I Construction of Instruments Attraction and Repulsion type Permanent Magnet and Eletrod				
VI.	D.C. Generators & Motors Principle of operation of Genera Speed Control of shunt motors Flux control, Rheostatic control Speed control of series motors				
VII.	A.C. Generators & Motors Principle of operation Removing Magnetic field Squirrel cage and phase wound Starting of Induction motors Direct on line and Star Delta sta Synchronous machines				
VIII.	Transformers Construction Regulation and efficiency calcul Open and short circuit tests	ations			

Paper Code: BA-109LT/PCPaper ID: 99109Paper : Mathematics - I324

1(a) Calculus of functions of One variable

- Successive Differentiation, Leibnitz's theorem (without proof). Lagrange's Theorem, Cauchy Mean value theorems, Taylor's theorem (without proof), Remainder term, Asymptotes, Curvature, Curve Tracing.
- Infinite Series: Convergence, divergence, Comparison test, Ration Test, Cauchy nth root test, Leibnitz's test (without proof), Absolute and Conditional Convergence, Taylor and Meclaurin series, Power Series, Radius of Convergence.
- (iii) Integral Calculus: Reduction Formulae of trigonometric functions, Properties of definite Integral, Applications to length, area, volume, surface of revolution, Definition of improper integrals, Beta-Gamma functions.

1(b) Calculus of Functions of several variables:

Partial derivatives, Chain rule, Differentiation of Implicit functions, Exact differentials. Maxima, Minima and saddle points, Method of Lagrange multipliers. Differentiation under Integral sign, Jacobians and transformations of coordinates. Double and Triple integrals. Simple applications to areas, Volumes etc.

II Vector Calculus:

Scalar and vector fields, Curves, Arc length, Tangent, normal, Directional Derivative, Gradient of scalar field, divergence and curl of a vector field. Line integral (independent of path), Green's theorem, Divergence theorem and Stoke's theorem (without proofs), Surface Integrals.

Suggested Text Books & References

- 1. G.B. Thomas and R.L. Finney, "Calculus and Analytic Geometry", 6th edition, Addison-Wesley/Narosa, 1985.
- 2. Shanti Narayan, "Differential Calculus", S. Chand & Co.
- 3. Shanti Narayan, "Integral Calculus", S. Chand & Co.
- 4. Grewal B.S., "Higher Engineering Mathematics", Khanna Publ.
- 5. E. Kreyszig, "Advanced Engineering Mathematics", 5th Edition, Wiley Eastern, 1985.
- 6. Murray R. Spiegel, "Theory and Problems of Vectors Analysis", Schaum's Outline Series, Mc Graw Hill Ed.
- 7. S.C. Malik, "Mathematical Analysis", Wiley Eastern Ltd.
- 8. "Advanced Calculus", Schaum's Outline Series, Mc Graw Hill Ed.
- 9. Widder, "Advanced Calculus", 2nd Edition, Prentice Hall Publishers.

8 hrs

14 hrs

5 hrs

12 hrs

12 hrs

Paper Code: BA-111	
Paper ID: 99111	Paper: Physics – I

I OPTICS

Polarization

Types of polarization, elliptically and circularly polarized light Brewsters law, Malu's law, Nicol prism, double refraction, quarter-wave and half-wave plates, optical activity, specific rotation, Laurent half shade polarimeter.

Interference

Coherence and coherent sources, interference by division of wave front (young's double slit experiment, Fresnel's biprism), interference by division of amplitude (thin films, Newton's rings, Michelson's interferrometer, Fabry Perot interferrometer)

Diffraction

(Fresnel and Fraunhofer types of diffraction) Fraunhofer difraction: Single slit, double slit, circular aperture and N-slit, diffraction grating wavelength determination, resolving power and dispersive power, Fresnel Diffraction: Zone plate, circular aperture, opaque circular disc, narrow slit.

II LASER AND FIBRE OPTICS

Lasers

Introduction, coherence, Einstein A and B coefficients, population inversion, basic principle and operation of a laser, type of lasers, He-Ne laser, Ruby laser, semiconductor laser, holography-theory and applications.

Fibre Optics:

Introduction to optical fibre, types of optical fibres and their characteristics, (Attenuation and dispersion step index and graded index fibres, principle of fibre optic communication-total internal reflection, numerical aperture, fibre optical communication network (qualitative)-its advantages.

III Theory of relativity

Absolute and Inertial frames of reference, Galenlian transformations, Michelson-Morley experiment, the postulates of the special theory of relativity, Lorentz transformations, time dilation, length contraction, velocity addition, mass energy equivalence.

Recommended Books

- 1. Concepts of Modern Physics: A. Beiser
- 2. Modern Physics: Kenneth Krane
- 3. Fundaments of Optics: Jenkins and White
- 4. Optics: Ghatak
- 5. Fundamental of Physics by RESNICK & HALLIDAY

5 hrs.

T/P

1

L

2

С

3

7 hrs.

7 hrs.

5 hrs.

5 hrs.

5 hrs.

Paper Code: HS -119	L	T/P	С
	1	-	1

Paper ID-98119 Paper :Impact of Science and Technology on society I

Unit – I:

Sociology of Scientific Knowledge: What is the relationship between science and the social?– Conventional view of philosophers and historians of science-Sociology of Science (Karl Manheim-Robert K. Merton)

Unit – II:

Social Function of Science-(Joseph Bernal)-The Radical Science Movement-the Kuhnian intervention-Science as a social activity: Strong Programme-Laboratory Studies/ethnography of science- Actor Network Theory (Bruno Latour)-communicating science to peers- scientific controversies-public engagement with S&T-the changing configuration of science- mode II knowledge production

Unit – III:

Technology – Society Interface Technoscience and the Interpenetration of Science & Technology Questioning of the traditional boundary between science (knowing) and technology (doing)—how science and technology together shape the ways in which knowledge is constructed----Technological Determinism, Power and the Politics of Knowledge Production

Unit - IV

Social-Psychological Theories of Innovation: What are the bases of innovation? Whether everyone is innovative? Why one is innovative and others are not? Such individual level question will be asked in this unit and try to look into individual level motivation to innovate, neurophysiological basis of innovations and social factors which affect innovations.

Text Books:

1.Collins, Harry and Pinch, Trevor 1993 : The Golem: What Everyone should Know about Science. Cambridge: Cambridge University Press.

2.Hess, David J. 1995. Science and Technology in a Multicultural World: The Cultural Politics of Facts and Artefacts. New York: Columbia Press.

3. Hess, David J. 1997. Science Studies: An Advanced Introduction. New York: NewYork University Press.

4. Jasanoff, Sheila et al. (eds.). 1995. Handbook of Science and Technology Studies. Thousand Oaks, CA: Sage Publications.

Code: HS102		L	T/P	С
Paper ID:98102	Paper: Communication Skills – II	1	2	3

1. Some Key Concepts:

Communication as sharing; context of communication; the speaker/writer and the listener/reader; medium of communication; barriers to communication; accuracy, brevity, clarity and appropriateness in communication.

2. Writing:

Selecting material for expository, descriptive, and argumentative pieces; business letters; formal report; summarizing and abstracting; expressing ideas within a restricted word limit; paragraph division, introduction and the conclusion; listing reference material; use of charts, graphs and tables; punctuation and spelling; semantics of connectives, modifiers and modals, variety in sentences and paragraphs.

3. Reading Comprehension:

Reading at various speeds (slow, fast, very fast), reading different kinds of texts for different purposes (e.g., for relaxation, for information, for discussion at a later stage, etc.); reading between the lines.

4. Speaking:

Achieving desired clarity and fluency; manipulating paralinguistic features of speaking (voice quality, pitch, tone, etc.); pausing for effectiveness while speaking, task-oriented, interpersonal, informal and semiformal speaking; making a short classroom presentation.

5. Group Discussion:

Use of persuasive strategies including some rhetorical devices for emphasizing (for instance; being polite and firm; handling questions and taking in criticism of self; turn-taking strategies and effective intervention; use of body language).

6. Listening Comprehension:

Achieving ability to comprehend material delivered at relatively fast speed; comprehending spoken material in Standard Indian English, British English and American English, intelligent listening in situations such as an interview in which one is a candidate.

Code: IT104		L	T/P	С
Paper ID:15104	Paper: Engineering Mechanics	3	1	4

- 1. Force System: Introduction, force, principle of transmissibility of force, resultant of a force system, resolution of a force, moment of force about a line. Varigon's theorem, couple, resolution of force into force and a couple, properties of couple and their application to engineering problems.
- 2. Equilibrium: Force body diagram, equations of equilibrium and their applications to engineering problems, equilibrium of two force and three force member
- 3. Structure: Plane truss, perfect and imperfect truss, assumption in the truss analysis, analysis of perfect plane trusses by the method of joints, method of section and graphical method.
- 4. Friction: Static and Kinetic friction, laws of dry friction, co-efficient of friction, angle of friction, angle of repose, cone of friction, frictional lock, friction of flat pivot and collered thrust bearings, friction in journal-bearing, friction in screws, derivation of equation.

 $T_1 / T_2 = \lambda_e A$ and its application.

- 5. Distributed Forces: Determination of center of gravity, center of mass and centroid by direct integration and by the method of composite bodies mass moment of inertia and area moment of inertia by direct integration and composite bodies method, radius of gyration, parallel axis theorem, Pappus theorems, polar moment of inertial., Dynamics.
- 6. Kinematics of Particles: Rectilinear motion, plane curvilinear motion-rectangular coordinates, normal and tangential coordinates
- 7. Kinetics of Particles: Equation of motion, rectilinear motion and curvilinear motion, work energy equation, conservation of energy, impulse and momentum conservation of momentum, impact of bodies, co-efficient of restitution, loss of energy during impact.
- 8. Kinematics of Rigid Bodies: Concept of rigid body, types of rigid body motion, absolute motion, introduction to relative velocity, relative acceleration (Corioli's component excluded) and instantaneous center of zero velocity, Velocity and acceleration polygons for four bar mechanism and single slider mechanism.
- 9. Kinetics of Rigid Bodies: Equation of motion, translatory motion and fixed axis rotation, application of work energy principles to rigid bodies conservation of energy.
- 10. Vibrations: Classification, torsional free vibrations-single rotor and two rotor system, Spring mass system-its damped (linear dash pot) and undamped free vibrations, spring in series and parallel, simple problems.

Text/Reference:

1. U.C. Jindal, "Engineering Mechanics", Galgotia Publication.2000.

Polynomials, Bessel's equation, Bessel's function.

Paper Code: BA – 108

П.

10 hrs. Complex Variables: Curves and Regions in the Complex Plane, Complex III. Functions, Limits, Derivative, Analytic Function, Cauchy-Riemann Equations, Laplace's Equation, Linear Fractional Transformations, Conformal Mapping, Complex Line Integral, Cauchy's Integral Theorem, Cauchy's Integral Formula, Derivatives of Analytic Function, Power Series, Taylor Series, Laurent Series, Methods for obtaining Power Series, Analyticity at Infinity, Zeroes, Singularities, Residues, Residue Theorem, Evaluation of Real Integrals.

18 hrs.

IV. Probability: Definition of Sample Space, Event, Event Space, Conditional Probability, Additive and Multiplicative law of Probability, Baye's Law theorem, Application based on these results.

5 hrs.

Suggested Text Books & References

- M. K. Singhal & Asha Singhal "Algebra", R. Chand & Co. 1.
- 2. Shanti Narayan, "Matrices" S. Chand & Co.
- 3. G. B. Thomas and R. L. Finney, "Calculus and Analytic Geometry" Addison Wesley / Narosa.
- E. Kreyszig, "Advanced Engineering Mathematics", 5th Edition, Wilev 4. Eastern Ltd. 1985.
- 5. N. M. Kapoor "Differential Equations" Pitamber Pub. Co.
- Schaum Outline Series "Differential Equations" Mc. Graw Hill. 6.
- 7. Schaum Outline Series "Complex Variables" Mc. Graw Hill.
- 8. Schaum Outline Series "Linear Algebra" Mc. Graw Hill.
- 9. Schaum Outline Series "Probability" Mc. Graw Hill.

Mathematics - II

L T/P Credits 3 1 4

I. Linear Algebra: Linear Independence and dependence of vectors, Systems of linear equations - consistency and inconsisitency, Gauss elimination method, rank of a matrix, Bilinear, Quadratic, Hermitian, Skew – Hermitian Forms, Eigenvalues and Eigenvectors of a matrix, diagonalization of a matrix, Cayley – Hamilton Theorem (without proof).

degree and solutions. ODE's of first order: Method of separation of variables, homogeneous and nonhomogeneous equations, exactness and integrating factors, linear equations and Bernouilli equations, operator method, method of undetermined coefficients and nonhomogenous, operator method, method of undetermined coefficients and variation of parameters. Solutions of simple simultaneous ODE's. Power series method of solution of DE, Legendre's Equation, Legendre's

Ordinary Differential Equations: Formation of ODE's, definition of order,

10 hrs.

IV

PHYSICS - II

Paper Code: BA – 110

I. **Ouantum Mechanics**

Wave particle duality, deBroglie waves, evidences for the wave nature of matter – the experiment of Davisson and Germer, electron diffraction, physical interpretation of the wave function and its properties, the wave packet, the uncertainty principle

L

2

T/P

1

The Schrödinger wave equation (1 - dimensional), Eigen values and Eigen functions, expectation values, simple Eigen value problems – solutions of the Schrodinger's equations for the free particle, the infinite well, the finite well, tunneling effect, simple harmonic oscillator (qualitative), zero point energy.

П. **Quantum Statistics**

The statistical distributions: Maxwell Boltzmann, Bose-Einstein and Fermi-Dirac statistics, their comparisons, Ferminos and Bosons Applications: Molecular speed and energies in an ideal gas. The Black body spectrum, the failure of classical statistics to give the correct explanations – the applications of Bose-Einstein statistics to the Black body radiation spectrum, Fermi-Dirac distribution, free electron theory, electronic specific heats, Fermi energy and average energy-its significance.

Ш **Band Theory of Solids**

Overview of Electro – Magnetism

Surface, Introduction to EM wave.

Origin of energy bands in solids, motion of electrons in a periodic potential – the Kronig – Penny model. Brillouin zones, effective mass, metals, semiconductors and insulators and their energy band structures. Extrinsic and Intrinsic semiconductors, doping - Fermi energy for doped and undoped semiconductors, the p-n junction (energy band diagrams with Fermi energy), the unbiased diode, forward and reverse biased diodes - tunnel diodes, zener diode, photo diode its characteristics, LED, Introduction to transistors.

Maxwell's Equations: The equation of continuity for Time - Varying fields, Inconsistency in ampere's law Maxwell's Equations, conditions at a Boundary

4 hrs.

6 hrs.

Credits

3

10 hrs.

10 hrs.

Recommended Books

- 1. Concept of Modern Physics: A. Beiser
- Modern Physics: Kenneth Krane Solid State Physics by Kittle Electronic Principles: Malvino 2.
- 3.
- 4.
- Statistical Mechanics by Garg Bansal and Ghosh (TMH) 5.

STATISTICS, THEORY OF PROBABILITY AND LINEAR PROGRAMMING

Paper Code: BA – 114

L T/P Credits 2 1 3

I. Probability, Statistics

Elementary Probability theory, Random Variables: discrete and continuous, distribution and density functions, Expectation, Moments, Moment Generating function, Skewness, Kurtosis, Binomial, Poisson and Normal distribution, Method of least square for linear and parabolic curves, Correlation of a bivariate distribution, Linear regression, properties of regression coefficient, Sampling distribution of mean and variance, Testing of Statistical hypothesis, F-test, T-test and chi square test.

17 hrs.

II. Linear Programming

Mathematical Preliminaries, Formulation of the Problem and Solution by Graphical method. The simplex Method, Dual problem formulation and Solution, Application to Transportation and Assignment Problems.

17 hrs.

Suggested Text Books & References

- 1. Irwin Miller and John E. Freund, "Probability and Statistics for Engineers" PHI
- 2. Spiegel, "Probability and Statistics", Schaum Series
- 3. S C. Gupta and V. K. Kapur "Fundamentals of Mathematical Statistics", Sultan Chand & Sons.
- 4. Kambo N. S., "Mathematical Programming Techniques", Mc Graw Hill
- 5. Hadley, "Linear Programming" Narosa Publications.

CHEMISTRY – II

Paper Code: BA – 118

L	T/P	Credits
2	1	3

- 1. Atomic Structure: Introduction to wave mechanics, the Schrodinger equation as applied to hydrogen atom, origin of quantum numbers, Long form of periodic table on the basis of Electronic configuration s, p, d, f block elements periodic trends, Ionisation potential, atomic and ionic radii electron affinity & electro-negativity.
- 2. Chemical Bonding: Ionic bond, energy changes, lattice energy Born Haber Cycle, Covalent bond-energy changes, Potential energy curve for H2 molecule, characteristics of covalent compound, co-ordinate bond-Werner's Theory, effective atomic numbers, A hybridization and resonance, Valence Shell Electron Repulsion theory (VSEPR), Discussion of structures of H₂O, NH₃, BrF₃, SiF₄, Molecular orbital theory, Linear combination of atomic orbitals (LCAO) method. Structure of simple homo nuclear diatomic molecule like H₂, N₂, O₂, F₂.
- 3. Thermochemistry: Hess's Law, heat of reaction, effect of temperature on heat of reaction at constant pressure (Kirchoff's Equation) heat to dilution, heat of hydration, heat of neutralization and heat of combustion, Flame temperature.
- 4. Reaction Kinetics: Significance of rate law and rate equations, order and molecularity, Determinations of order of simple reactions-experimental method, Equilibrium constant and reaction rates-Lindermann, collision and activated complex theories, complex reactions of 1st order characteristics of consecutive, reversible and parallel reactions-Steady state and non-steady state approach.
- 5. Electron Chemistry: Conductance of electrolytic solutions transference number and its determination, Kohlrausch's Law of in-dependent migration of ions, Interionic attraction theory, activity and activity coefficient of strong electrolytes.
- 6. Catalysis: Criteria for Catalysis-Homogeneous Catalysis, acid-base, Enzymatic catalysis, Catalysis by metal salts, Heterogeneous catalysis – concept of promoters, inhibitors and poisoning, Physiosorption, Chemisorption, Suface area, Industrially important process. Theories of catalysis.
- 7. Phase rule: Derivation of phase rule, Significance of various terms involved in the definitions phase diagram of one competent system miscibility, interpolations of two component system diagrams.

Paper Code: HS -126	L	T/P	Credits
	1	-	1

Paper ID-98126 Paper : Impact of Science and Technology on society II

Unit – I

Technology in Context: Perspectives in STS Studies This section examines various perspectives on Technology in STS studies A) Social Shaping of Technology B) Social Construction of Technology C) Actor Network Theory D) Transition in Socio-Technical Systems: Multi-Level Perspective E) Critical Theory of Technology

Unit – II

Gender and Technology How gender influences technologies and the social organization of scientific and technical workspaces---technologies constructed as masculine and feminine—technologies as both 'liberating' and 'limiting' women---contributions of Cynthia Cockburn & Donna Haraway

Unit – III

Public Engagement with Technology Contributions of Trench, Lewenstein, Jasanoff & Vishvanathan---governance and ethical issues in the context of emerging technologies----- constructing risk....role of State, civil society organizations and industry---regulatory dilemmas of transnational capitalism and influence of local contexts—democratisation and 'up-stream' public engagment with technology

Unit – IV

Innovation and its impact in the society: Whether all innovations are good or bad? Who are benefited from these innovations? Is there any difference between formal and informal sector innovations. These questions will be discussed in this unit. We will look into innovation and its role in the development process, what are the policy implications of innovation and some specific cases such as grassroots innovations will be taken up to understand the role of innovations in the society.

Text Books:

1.Collins, Harry and Pinch, Trevor 1993 : The Golem: What Everyone should Know about Science. Cambridge: Cambridge University Press.

2. Hess, David J. 1995. Science and Technology in a Multicultural World: The Cultural Politics of Facts and Artefacts. New York: Columbia Press.

3. Hess, David J. 1997. Science Studies: An Advanced Introduction. New York: NewYork University Press.

4. Jasanoff, Sheila et al. (eds.). 1995. Handbook of Science and Technology Studies. Thousand Oaks, CA: Sage Publications.

Code No.: IT 128		L	T/P	С
PaperID: 15128	Paper: Data Structures	3	0	3

Unit – 1:

Introduction to programming methodologies and design of algorithms. Abstract Data Type, array, array organization, sparse array. Stacks and Stack ADT, Stack Manipulation, Prefix, infix and postfix expressions, their interconversion and expression evaluation. Queues and Queue ADT, Queue manipulation. General Lists and List ADT, List manipulations, Single, double and circular lists.

Unit – 2:

Trees, Properties of Trees, Binary trees, Binary Tree traversal, Tree manipulation algorithms, Expreession trees and their usage, binary search trees, AVL Trees, Heaps and their implementation.

Unit – 3:

Multiway trees, B-Trees, 2-3 trees, 2-3-4 trees, B* and B+ Trees. Graphs, Graph representation, Graph Traversal.

Unit – 4:

Sorting concept, order, stability, Selection sorts (straight, heap), insertion sort (Straight Insertion, Shell sort), Exchange Sort (Bubble, quicksort), Merge sort (only 2-way merge sort). Searching – List search, sequential search, binary search, hashing concepts, hashing methods (Direct, subtraction, modulodivision, midsquare, folding, pseudorandom hashing), collision resolution (by open addressing: linear probe, quadratic probe, pseudorandom collision resolution, linked list collision resolution), Bucket hashing.

Text:

- [1] R. F. Gilberg, and B. A. Forouzan, "Data structures: A Pseudocode approach with C", Thomson Learning.
- [2] A.V. Aho, J. E. Hopcroft, J. D. Ulman "Data Structures and Algorithm", Pearson Education.

Reference

- [2] S. Sahni and E. Horowitz, "Data Structures", Galgotia Publications.
- [3] Tanenbaum: "Data Structures using C", Pearson/PHI.
- [4] T.H. Cormen, C.E. Leiserson, R.L. Rivest "Introduction to Algorithms", PHI/Pearson.
- [5] V. Manber "Introduction to Algorithms A Creative Approach", Pearson Education.
- [6] Ellis Horowitz and Sartaz Sahani "Fundamentals of Computer Algorithms", Computer Science Press.

Paper ID: 15201		L	Т	С
Paper Code: IT201	Paper: Computational Methods	3	1	4

Unit – 1:

Errors in computation, Review of Taylor Series, Mean Value Theorem. Representation of numbers (integers and Floating Point). Loss of Significance in Computation.

Location of Roots of functions and their minimization: Bisection method (convergence analysis and implementation), Newton Method (convergence analysis and implementation), Secant Method (convergence analysis and implementation). Unconstrained one variable function minimization by Fibonnaci search, Golden Section Search and Newton's method. Multivariate function minimization by the method of steepest descent, Nelder- Mead Algorithm.

Unit – 2:

Interpolation and Numerical Differentiation: Interpolating Polynomial, Lagrange Form, Newton Form, Nested Form, Inverse Interpolation, Neville's Algorithm, Errors in interpolation, Estimating Derivatives and Richardson Extrapolation.

Numerical Integration: Definite Integral, Riemann – Integrable Functions, Traezoid Rule, Romberg Algorithm, Simpson's Scheme, Gaussian Quadrature Rule.

Unit – 3:

Linear System of Equations: Conditioning, Gauss Elimination, Pivoting, Cholesky Factorization, Iterative Methods, Power Method

Approximation by Spline Function: 1st and 2nd Degree Splines, Natural Cubic Splines, B Splines, Interpolation and Approximation.

Unit – 4:

Differential Equations: Euler method, Taylor series method of higher orders, Rubge – Kutta method of order 2 and 4, Runge – Kutta – Fehlberg method, Adas – Bashforth – Moulton Formula. Solution of Parabolic, Hyperbolic and Elliptic PDEs.

Implementation to be done in C/C++.

Text:

[1] D. Kincaid and W. Cheney, "Numerical Analysis: Mathematics of Scientific Computing", Thomson/Brooks-Cole., 1991.

Reference:

- [2] D. Kincaid and W. Cheney, "Numerical Analysis", Thomson/Brooks-Cole., 2002.
- [3] R. L. Burden and J. D. Faires, "Numerical Analysis", Thomson/Brooks-Cole, 2001.
- [4] W. Y. Yang, W. Cao, T.-S. Chung and J. Morris, "Applied Numerical Methods Using Matlab", Wiley, 2005.
- [5] J. H. Mathews and K. D. Fink, "Numerical Methods Using Matlab", Printice Hall, 1999.
- S. D. Conte and C. de Boor, "Elementary Numerical Analysis: An Algorithmic Approach", McGraw Hill, 1980.
- [7] J. D. Hoffman, "Numerical Methods for Engineers and Scientists", Marcel Dekker Inc., 2001.
- [8] J. Stoer and R. Bulirsch, "Introduction to Numerical Analysis", Springer Verlag, 1993.
- [9] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, "Numerical Recipes in C", CUP, 2002.
- [10] W. Boehm and H. Prautzch, "Numerical Methods", Universities Press, 2005.
- [11] C. F. Gerald, and P. O. Wheatly, "Applied Numerical Analysis", Pearson, 1994
- [12] H. M. Antia, "Numerical Methods for Scientists & Engineers", Hindustan Book Agency, 2002.

Paper ID: 15203		L	Т	С
Paper Code: IT203	Paper: Circuits and Systems	3	1	4

Unit – 1:

Review of complex variables: Complex Numbers, Algebra of Complex Numbers, Functions of Complex Variable, Taylor and Laurant Series, Differentiation, Integration, Cauchy Theorem, Residue Theorem.

Unit – 2:

Signals, Classification of Signals, Systems, Classification of Systems, Linear Time Invariant (LTI) Systems; Laplace Transform, z-Transform, Fourier Series and Transform (Continuous and Discrete) and their properties. Laplace Transform and Continuous Time LTI systems, z-Transform and Discrete Time LTI systems, Fourier analysis of signals and systems, State Space Analysis.

Unit – 3:

Circuits: Voltage, Ideal Voltage Source, Current Ideal Current Sources, Classification of Circuits, Ohm's Law, Resistively, Temperature Effect, Resistors, Resistor Power Absorption, Nominal Values and Tolerances, Colour Codes, Open and Short Circuits, Internal Resistance.

DC Circuits: Series and Parallel Circuits, Kirchhoff's Voltage and Current Law, Mesh Analysis, Loop Analysis, Nodal Analysis, Thevenin's and Norton's Theorem, Maximum Power Transfer Theorem, Superposition Theorem, Millman's Theorem, Y - Δ and Δ - Y Transformation, Bridge Circuits.

Unit – 4:

AC Circuits: Circuits containing Capacitors and Inductors, Transient Response, Alternating Current and Voltages, Phasors, Impedences and Admittance, Mesh Analysis, Loop Analysis, Nodal Analysis, Thevenin's and Norton's Theorem, Y - Δ and Δ - Y Transformation, Bridge Circuits. Resonant Circuits, Complex Frequency and Network Function, Two port Networks. Passive Filters.

Text:

- [1] B. P. Lathi, "Signal Processing and Linear System", Berkeley Cambridge Press, 1998.
- [2] A. H. Robbins and W. C. Miller, "Circuit Analysis: Theory and Practice", Thomson Learning/Delmar Pub., 2007.
- [3] A. B. Carlson, "Circuits", Thomson/Brooks-Cole, 2000.

Reference:

- [4] S. Haykin and B. V. Veen, "Signal and Systems", John Wiley and Sons, 1999.
- [5] H. P. Hsu, "Schaum's Outlines of The Theory and Problems of Signals and Systems", McGraw-Hill, 1995.
- [6] S. Madhu, "Linear Circuit Analysis", Prentice Hall, 1988.
- [7] S. Ghosh, "Signals and Systems", Pearson Education, 2006.
- [8] S. Poornachandra, "Signal and Systems", Thomson Learning, 2004.
- [9] M. Nahvi and J. A. Edminister, "Schaum's Outline of Theory and Problems of Electric Circuits", McGraw-Hill, 2003.

Paper ID: 15205		L	Т	С
Code No: IT205	Paper : Electronic Devices & Circuits	3	1	4
	Skill Development/Employability			

UNIT – 1:

Semiconductor diodes and their applications

Construction, characteristics and working principles of semi conductor diodes: PN junction diode, zener diode, varactor diode, schottky diode, photo diodes, Light emitting diode, Laser diode.

UNIT – 2:

Transistors and Biasing

Construction, operation of NPN & PNP transistor, characteristics, Types of configurations, methods of transistor biasing and stabilization.

<u>UNIT – 3:</u>

Field Effect Transistor Classification of FET's, construction & working principles of JFET, MOSFET, biasing methods, small signal model parameters.

UNIT – 4:

Linear Integrated Circuits Differential amplifier circuits, operational amplifiers and its applications,

Oscillators

Concept of Feedback, barkhausen criteria for sinusoidal oscillators, phase shift oscillators, wein bridge & crystal oscillator.

Text/References:

- 1. B. P. Singh and R. Singh, Electronic Devices & Integrated Circuits, Pearson, 2006.
- 2. B. Kumar and S. J. Jain, Electronic Devices and Circuits, "Prntice Hall of India, 2007.
- 3. Boylestad, "Electronic Devices and Circuit Theory", 9th Ed.
- 4. S.G. Burns, P.R. Bond, "Principles of Electronic Circuits, 2nd Ed., Galgotia
- M.S. Roden, G.L. Carpenter & W.R.Wieseraman, "Electronic Design", Shroff Publisher & Distributors.
- 6. B. G. Streetman, Theory & Technology & Semiconductor Devices.
- 7. Millman & Halkias Electronic Devices & Circuits, TMH(ISE)
- 8. S. Salivahanan & other, Electronic Devices & Circuits, TMH.
- 9. Malvino, Electronic Principles, TMH.
- 10. Jacob Millman, Micro Electronics, TMH.

PaperID:15207 Code: IT207 L

3

Skill Development/Employability

Unit – 1:

Objects, relating to other paradigms (functional, data decomposition), basic terms and ideas (abstraction, encapsulation, inheritance, polymorphism). Review of C, difference between C and C++, cin, cout, new, delete operators.

Unit – 2:

Encapsulation, information hiding, abstract data types, object & classes, attributes, methods. C++ class declaration, state identity and behavior of an object, constructors and destructors, instantiation of objects, default parameter value, object types, C++ garbage collection, dynamic memory allocation, metaclass/abstract classes.

Unit – 3:

Inheritance, Class hierarchy, derivation – public, private & protected; aggregation, composition vs classification hierarchies, polymorphism, categorization of polymorphic techniques, method polymorphism, polymorphism by parameter, operator overloading, parametric polymorphism, generic function – template function, function name overloading, overriding inheritance methods, run time polymorphism.

Unit – 4:

Standard C++ classes, using multiple inheritance, persistant objects, streams and files, namespaces, exception handling, generic classes, standard template library: Library organization and containers, standard containers, algorithm and Function objects, iterators and allocators, strings, streams, manipulators, user defined manipulators, vectors, valarray, slice, generalized numeric algorithm.

Text:

- 1. S. B. Lippman & J. Lajoie, "C++ Primer", 3rd Edition, Addison Wesley, 2000.
- 2. A.R.Venugopal, Rajkumar, T. Ravishanker "Mastering C++", TMH

- 1. Rumbaugh et. al. "Object Oriented Modelling & Design", Prentice Hall
- 2. G. Booch "Object Oriented Design & Applications", Benjamin, Cummings.
- 3. E.Balaguruswamy, "Objected Oriented Programming with C++", TMH
- 4. R. Lafore, "Object Oriented Programming using C++", Galgotia.
- 5. D. Parasons, "Object Oriented Programming with C++", BPB Publication.
- 6. Steven C. Lawlor, "The Art of Programming Computer Science with C++", Vikas Publication.

PaperID: 15209		L	Т	С
Code: IT209	Paper : Computer Graphics	3	1	4
	Skill Development/Fmployability			

Unit – 1:

Basic raster graphics algorithms for drawing 2 D Primitives liner, circles, ellipses, arcs, clipping, clipping circles, ellipses & polygon.

Unit – 2:

Polygon Meshes in 3D, curves, cubic & surfaces, Solid modeling.Geometric Transformation: 2D, 3D transformations, window to viewport transformations, acromatic and color models. Graphics Hardware: Hardcopy & display techniques, Input devices, image scanners

Unit – 3:

Shading Tech: Transparency, Shadows, Object reflection, Gouraud & Phong shading techniques. Visible surface determination techniques for visible line determination, Z-buffer algorithm, scanline algorithm, algorithm for oct-tres, algorithm for curve surfaces, visible surfaces ray-tracing, recursive ray tracing, radio-city methods.

Unit – 4:

Elementary filtering tech, elementary Image Processing techniques, Geometric & multi-pass transformation mechanisms for image storage & retrieval. Procedural models, fractals, grammar-based models, multi-particle system, volume rendering.

Text:

1. Foley et. al., "Computer Graphics Principles & practice", AWL.

- 1. R.H. Bartels, J.C. Beatty and B.A. Barsky, "An Introduction to Splines for use in Computer Graphics and Geometric Modeling", Morgan Kaufmann Publishers Inc., 1987.
- 2. D. Hearn and P. Baker, "Computer Graphics", Prentice Hall, 1986.
- 3. W. Newman and R. Sproul, "Principles of Interactive Computer Graphics, McGraw-Hill, 1973.
- R. Plastock and G. Kalley, "Theory and Problems of Computer Graphics", Schaum's Series, McGraw Hill, 1986.
- F.P. Preparata and M.I. Shamos, "Computational Geometry: An Introduction", Springer-Verlag New York Inc., 1985.
- 6. D. Rogers and J. Adams, "Mathematical Elements for Computer Graphics", MacGraw-Hill International Edition, 1989.
- 7. David F. Rogers, "Procedural Elements for Computer Graphics", McGraw Hill Book Company, 1985.
- Alan Watt and Mark Watt, "Advanced Animation and Rendering Techniques", Addison-Wesley, 1992.

Paper ID: 15211			L	Т	Р
Code: IT211	Paper	: Data Base Management Systems	3	1	4
	Ski	11 Development/Employability/			

Unit – 1:

Basic concepts: database & database users, characteristics of the database, database systems, concepts and architecture, date models, schemas & instances, DBMS architecture & data independence, database languages & interfaces, data modelling using the entity-relationship approach. Overview of hierarchical, Network & Relational Data Base Management Systems.

Relational model, languages & systems: relational data model & relational algebra: relational model concepts, relational model constraints, relational algebra, SQL- a relational database language: date definition in SQL, view and queries in SQL, specifying constraints and indexes in sql.

Unit – 2:

Oracle Architecture, Logical Data Structures Physical Data Structure, Instances, Table Spaces, Types of Tablespaces, Internal Memory Structure, Background Processes, Data Types, Roles & Privileges, Stored Procedures, User Defined Functions, Cursors, Error Handling, Triggers.

Unit – 3:

Relational data base design: function dependencies & normalization for relational dataases: functional dependencies, normal forms based on primary keys, (1NF, 2NF, 3NF & BCNF), lossless join and dependency preserving decomposition (4NF, 5NF), domain key normal form.

Unit – 4:

Concurrency control & recovery techniques: concurrency control techniques, locking techniques, time stamp ordering, granularity of data items, recovery techniques: recovery concepts, database backup and recovery from catastrophic failures.

Concepts of object oriented database management systems, Distributed Data Base Management Systems.

Text:

1. Elmsari and Navathe, "Fundamentals of database systems", Pearson Education

- 2. Date, C. J., "An introduction to database systems", 8th Edition, Pearson Education.
- P. Rob & C. Coronel, "Database Systems: Design Implementation & Management", Thomson Learning, 2004
- 4. Date, C. J., "An introduction to database systems", 3rd Edition, Narosa publishing house.
- 5. A. V. Silberschatz, H. F. Korth and S. Sudershan, "Database System Concept", McGraw Hill, 2005.
- 6. Ullman, J. D., "Principals of database systems", Galgotia publications.
- 7. Desai, B., "An introduction to database concepts", Galgotia publications.

Paper ID: 15202		\mathbf{L}	Т	С
Code: IT202	Paper : Java Programming	3	1	4

Skill Development/Employability/Enterpreneurship

Unit 1:

Overview and characteristics of Java, Java program Compilation and Execution Process Organization of the Java Virtual Machine, JVM as an interpreter and emulator, Instruction Set, class File Format, Verification, Class Area, Java Stack, Heap, Garbage Collection. Security Promises of the JVM, Security Architecture and Security Policy. Class loaders and security aspects, sandbox model

Unit 2:

Java Fundamentals, Data Types & Literals Variables, Wrapper Classes, Arrays, Arithmetic Operators, Logical Operators, Control of Flow, Classes and Instances, Class Member Modifiers Anonymous Inner Class Interfaces and Abstract Classes, inheritance, throw and throws clauses, user defined Exceptions, The StringBuffer Class, tokenizer, applets, Life cycle of applet and Security concerns

Unit 3:

Threads: Creating Threads, Thread Priority, Blocked States, Extending Thread Class, Runnable Interface, Starting Threads, Thread Synchronization, Synchronize Threads, Sync Code Block, Overriding Synced Methods, Thread Communication, wait, notify and notify all.

AWT Components, Component Class, Container Class, LayoutManager Interface Default Layouts, Insets and Dimensions, BorderLayout, FlowLayout, GridLayout, CardLayout GridBagLayout AWT Events, Event Models, Listeners, Class Listener, Adapters, ActionEvent Methods FocusEvent KeyEvent, Mouse Events, WindowEvent

Unit 4:

Input/OutputStream, Stream Filters,Buffered Streams,Data input and OutputStream, PrintStream RandomAccessFile, JDBC (Database connectivity with MS-Access, Oracle, MS-SQL Server), Object serialization, Sockets, development of client Server applications, design of multithreaded server. Remote Method invocation, Java Native interfaces, Development of a JNI based application. Collection API Interfaces, Vector, stack, Hashtable classes, enumerations, set, List, Map, Iterators

Text/References

- 1. "Java-2 the complete Reference" by Patrick Naughton and Herbertz Schidt.
- 2. Head first Java, Sierra & bates, O'reilly
- 3. "Programming with Java" by E Balaguruswamy.
- 4. Horstmann, "Computing Concepts with Java 2 Essentials", John Wiley.
- 5. Decker & Hirshfield, "Programming. Java", Vikas Publication.

Paper ID: 15204		L	T/P	С
Code: IT204	Paper: Multimedia Applications	3	1	4

Skill Development//Enterpreneurship

Unit - 1

Concept of Multimedia ,Media & data stream, main properties of multimedia system , Data stream characteristics & for continuous media Multimedia Applications, Hardware Software requirements, Storage Technologies: RAID, Optical Media.

Unit - 2

Text, Basic sound concepts, MIDI, Speech, Basic concept of Images, Graphics format, Basic concepts of Video & animation, Conventional system, Computer based animation, Authoring Tools, Categories of Authoring Tools.

Unit - 3

Lossless and Lossy compression, Run length coding, Statistical Coding, Transform Coding, JPEG, MPEG, Text compression using static Huffmann technique, Dynamic Huffmann Technique, Arithmetic Technique.

Introduction, Basic Terminology techniques, tweaning & morphing, Motion Graphics 2D & 3D animation.

Unit - 4

Introduction to MAYA(Animating Tool): Fundamentals, Modeling: NURBS, Polygon, Organic, Animation:Key frame animation,reactive animation,path animation,Skelton animationetc., deformers.. Dynamics: soft bodies, Rigid bodies and its usages in the scene etc., Rendering: soft,Hard renering. IPR rendering, Line and box rendering etc., Special Effects: Shading & Texturing Surfaces, Lighting, Special effects. Working with MEL: Basics & Programming

Text Books:

- 1. David Hillman, "Multimedia Technology & Applications", Galgotia Publications.
- 2. Steinmetz "Multimedia Computing Communication and Application" Pearson Edn.
- 3. Andleigh and Thakarar "Multimedia System Design" PHI

Reference

- 1. Nigel Chapman & Jenny Chapman, "Digital Multimedia", Wiley Publications.
- 2. D.P. Mukherjee, "Fundamentals of Computer Graphics and Multimedia", PHI.
- 3. Maya manuals.

Paper ID: 15206		L	Т	С
Code: IT206	Paper: Switching Theory and Logic Design	3	1	4

Unit – 1:

Analog & Digital signals, AND, OR, NOT, NAND, NOR & XOR gates, Boolean algebra.

Standard representation of Logical functions, K-map representation and simplification of logical functions, Quinn-McClusky's Algorithm, Don't care conditions, X-OR & X-NOR simplification of K-maps.

Unit – 2:

Combinational circuits: Multiplexers, demultiplexers, Decoders & Encoders, Adders & Subtractors, Code Converters, comparators, decoder/drivers for display devices

Flip Flops: S-R, J-K, D & T Flip-flops, excitation table of a flip-flop, race around condition.

Unit – 3:

Sequential circuits: Shift registers, Ripple counter, Design of Synchronous counters and sequence detectors.

555 Timer and its application as mono-stable and astable multi-vibrator. Nyquist Sampling Theorem, A/D and D/A converters : Binary-weighted DAC, R-2R Ladder type networks, Successive-approximation ADC, Linear-ramp ADC, Dual-slope ADC

Unit – 4:

Bipolar-Transistor Characeristics, RTL and DTL circuits, TTL, ECL and C MOS Logic families.

Logic Implementations using ROM, PAL & PLA., Semiconductor Memories: Memory organization & operation, classification and characteristics of memories, RAM, ROM and content addressable memory.

Text/References:

- 1. R.P. Jain, "Modern Digital Electronics", TMH, 2nd Ed,
- 2. Malvino and Leach, "Digital principles and applications", TMH
- 3. Morris Mano, "Digital Design", PHI, 2nd Ed.
- 4. R. J. Tocci, "Digital Systems", PHI, 2000
- 5. I. J. Nagrath, "Electronics, Analog & Digital", PHI, 1999.
- 6. J. M. Yarbrough, "Digital Logic-Application and Design", PWS Publishing.
- 7. B. S. Nai, "Digital Electronics and Logic Design", PHI
- 8. Balabanian and Carlson, "Digital Logic Design Principles", Wiley Pub.

Paper ID: 15208				L	T/P	С
Code: MS208	Paper	:	Organization Behaviour	3	1	4

Introduction: Meaning and nature of management; management systems and processes, Tasks and responsibilities of a professional manager; Managerial skills.

Organization Structure and Process: Organizational climate and culture, Management ethos; Organizational Structure and Design: Managerial Communication; Planning process; Controlling.

Behavioural Dynamics: Individual detgerminants of Organization Behaviour; Perceptions, Learning, Personality, Attitudes and Values, Motivation; Stress and its management.

Interactive Aspects of Organizational Behaviour; Analysing inter-personal relations; Group Dynamics; Management of Organizational Conflicts; Leadership Styles.

Decision Making: Organizational Context of Decisions, Decision Making Models; Problem Solving and Decision Making.

- 1. Luthans Fred., "Organizational Behaviour", McGraw Hill, 1998.
- 2. Robbins (4th ed.), "Essentials of organizational behaviour", Prentice Hall of India Pvt. Ltd., New Delhi, 1995.
- 3. Hersey and Blanchard (6th ed.), "Management of organizational behaviour: utilising human resources", Prentice Hall of India Pvt. Ltd., New Delhi, 1996.
- 4. Dwivedi, R. S., "Human relations and organizational behaviour: a global perspective", Macmillan India Ltd., Delhi, 1995.
- 5. Arnold, John, Robertson, Ivan t. and Cooper, Cary, l., "Work psychology: understanding human behaviour in the workplace", Macmillan India Ltd., Delhi, 1996.

Paper ID: 15210			L	T/P	С
Code: IT210	Paper	: Foundations of Computer Science	3	1	4

TT *4	1.	
Unit	- 1:	

Formal Logic: Statement, Symbolic Representation and Tautologies, Quantifiers, Predicates and
validity, Normal forms. Propositional Logic, Predicate Logic. Direct Proof, Proof by Contraposition,
Proof by exhausting cases and proof by contradiction.
Sets, Subsets, powersets, binary and unary operations on a set, set operations/set identities,
fundamental counting principles, principle of inclusion and exclusion, pigeonhole principle,
permutation and combination, pascal's triangles, binominal theorem. Relation, properties of binary
relation, closures, partial ordering, equivalence relation, properties of function, composition of
function, inverse, Permutation function, composition of cycles. Discrete Function Counting Theorem.
Unit – 2:
Lattices: definition, sublattices, direct product, homomorphism, definition of Boolean algebra,
properties, isomorphic structures (in particulars, structures with binary operations) subalgebra, direct
product and homo-morphism, Boolean function, Boolean expression, representation & minimization of
Boolean function.
Principle of Well Ordering, principle of mathematical induction, principle of complete induction.
Recursive definitions, solution methods for linear, first-order recurrence relations with constant
coefficients, Analysis of Algorithms involving recurrence relations - comparison based sorting and
searching algorithms, solution method for a divide-and-conquer recurrence relation. Growth of
Functions, Masters theorem.
Unit – 3:
GCD, LCM, Fundamental Theorem of Arithmetic, primes, Congruences, Euler ϕ function, Fermat's
Little Theorem, Euler's Generalization of FLT, Wilson's Theorem, The functions τ and σ , Mobius μ
function, Arithmetic Functions, primitive roots, Quadratic congruences and quadratic reciprocity law,
Primality and Factoring, Simple Cryptosystems, RSA Cryptosystem. Groups, Group identity and
uniqueness, inverse and its uniqueness, isomorphism and homomorphism, subgroups, Cosets and
Lagrange's theorem, Permutation group and Cayley's theorem (without proof), Error Correcting codes
and groups, Normal subgroup and quotient groups.
Unit – 4:
Graph Terminology, Isomorphism, Isomorphism as relations, Cut-Vertices, Menger's Theorem, Planar
Graph Terminology, Isomorphism, Isomorphism as relations, Cut-Vertices, Menger's Theorem, Planar graphs, Euler's formula (proof), four color problem (without proof) and the chromatic number of a
Graph Terminology, Isomorphism, Isomorphism as relations, Cut-Vertices, Menger's Theorem, Planar graphs, Euler's formula (proof), four color problem (without proof) and the chromatic number of a graph, Euler graphs, Hamiltonian graphs, five color theorem, Vertex Coloring, Edge Colouring. Trees
Graph Terminology, Isomorphism, Isomorphism as relations, Cut-Vertices, Menger's Theorem, Planar graphs, Euler's formula (proof), four color problem (without proof) and the chromatic number of a graph, Euler graphs, Hamiltonian graphs, five color theorem, Vertex Coloring, Edge Colouring. Trees terminology, in order, preorder & post order trees traversal algorithms, directed graphs, Computer
Graph Terminology, Isomorphism, Isomorphism as relations, Cut-Vertices, Menger's Theorem, Planar graphs, Euler's formula (proof), four color problem (without proof) and the chromatic number of a graph, Euler graphs, Hamiltonian graphs, five color theorem, Vertex Coloring, Edge Colouring. Trees terminology, in order, preorder & post order trees traversal algorithms, directed graphs, Computer representation of graphs, Shortest path and minimal spanning trees and algorithms, Depth-first and
Graph Terminology, Isomorphism, Isomorphism as relations, Cut-Vertices, Menger's Theorem, Planar graphs, Euler's formula (proof), four color problem (without proof) and the chromatic number of a graph, Euler graphs, Hamiltonian graphs, five color theorem, Vertex Coloring, Edge Colouring. Trees terminology, in order, preorder & post order trees traversal algorithms, directed graphs, Computer representation of graphs, Shortest path and minimal spanning trees and algorithms, Depth-first and breadth first searchs, trees associated with DFS & BFS, Connected components. Complexity Analysis
Graph Terminology, Isomorphism, Isomorphism as relations, Cut-Vertices, Menger's Theorem, Planar graphs, Euler's formula (proof), four color problem (without proof) and the chromatic number of a graph, Euler graphs, Hamiltonian graphs, five color theorem, Vertex Coloring, Edge Colouring. Trees terminology, in order, preorder & post order trees traversal algorithms, directed graphs, Computer representation of graphs, Shortest path and minimal spanning trees and algorithms, Depth-first and
Graph Terminology, Isomorphism, Isomorphism as relations, Cut-Vertices, Menger's Theorem, Planar graphs, Euler's formula (proof), four color problem (without proof) and the chromatic number of a graph, Euler graphs, Hamiltonian graphs, five color theorem, Vertex Coloring, Edge Colouring. Trees terminology, in order, preorder & post order trees traversal algorithms, directed graphs, Computer representation of graphs, Shortest path and minimal spanning trees and algorithms, Depth-first and breadth first searchs, trees associated with DFS & BFS, Connected components. Complexity Analysis and proof of correctness of the graph MST, traversal and Shortest path algorithms.
Graph Terminology, Isomorphism, Isomorphism as relations, Cut-Vertices, Menger's Theorem, Planar graphs, Euler's formula (proof), four color problem (without proof) and the chromatic number of a graph, Euler graphs, Hamiltonian graphs, five color theorem, Vertex Coloring, Edge Colouring. Trees terminology, in order, preorder & post order trees traversal algorithms, directed graphs, Computer representation of graphs, Shortest path and minimal spanning trees and algorithms, Depth-first and breadth first searchs, trees associated with DFS & BFS, Connected components. Complexity Analysis and proof of correctness of the graph MST, traversal and Shortest path algorithms.
Graph Terminology, Isomorphism, Isomorphism as relations, Cut-Vertices, Menger's Theorem, Planar graphs, Euler's formula (proof), four color problem (without proof) and the chromatic number of a graph, Euler graphs, Hamiltonian graphs, five color theorem, Vertex Coloring, Edge Colouring. Trees terminology, in order, preorder & post order trees traversal algorithms, directed graphs, Computer representation of graphs, Shortest path and minimal spanning trees and algorithms, Depth-first and breadth first searchs, trees associated with DFS & BFS, Connected components. Complexity Analysis and proof of correctness of the graph MST, traversal and Shortest path algorithms. Text/Reference: [1] J.P. Tremblay & R. Mamohan, "Discrete Mathematical Structure with Application to Computer Science," TMH, New
 Graph Terminology, Isomorphism, Isomorphism as relations, Cut-Vertices, Menger's Theorem, Planar graphs, Euler's formula (proof), four color problem (without proof) and the chromatic number of a graph, Euler graphs, Hamiltonian graphs, five color theorem, Vertex Coloring, Edge Colouring. Trees terminology, in order, preorder & post order trees traversal algorithms, directed graphs, Computer representation of graphs, Shortest path and minimal spanning trees and algorithms, Depth-first and breadth first searchs, trees associated with DFS & BFS, Connected components. Complexity Analysis and proof of correctness of the graph MST, traversal and Shortest path algorithms. Text/Reference: J.P. Tremblay & R. Mamohan, "Discrete Mathematical Structure with Application to Computer Science," TMH, New Delhi (2000).
 Graph Terminology, Isomorphism, Isomorphism as relations, Cut-Vertices, Menger's Theorem, Planar graphs, Euler's formula (proof), four color problem (without proof) and the chromatic number of a graph, Euler graphs, Hamiltonian graphs, five color theorem, Vertex Coloring, Edge Colouring. Trees terminology, in order, preorder & post order trees traversal algorithms, directed graphs, Computer representation of graphs, Shortest path and minimal spanning trees and algorithms, Depth-first and breadth first searchs, trees associated with DFS & BFS, Connected components. Complexity Analysis and proof of correctness of the graph MST, traversal and Shortest path algorithms. Text/Reference: J.P. Tremblay & R. Mamohan, "Discrete Mathematical Structure with Application to Computer Science," TMH, New Delhi (2000). Kolman, Busby & Ross "Discrete Mathematical Structures", PHI/Pearson.
 Graph Terminology, Isomorphism, Isomorphism as relations, Cut-Vertices, Menger's Theorem, Planar graphs, Euler's formula (proof), four color problem (without proof) and the chromatic number of a graph, Euler graphs, Hamiltonian graphs, five color theorem, Vertex Coloring, Edge Colouring. Trees terminology, in order, preorder & post order trees traversal algorithms, directed graphs, Computer representation of graphs, Shortest path and minimal spanning trees and algorithms, Depth-first and breadth first searchs, trees associated with DFS & BFS, Connected components. Complexity Analysis and proof of correctness of the graph MST, traversal and Shortest path algorithms. Text/Reference: [1] J.P. Tremblay & R. Mamohan, "Discrete Mathematical Structure with Application to Computer Science," TMH, New Delhi (2000). [2] Kolman, Busby & Ross "Discrete Mathematical Structures", PHI/Pearson. [3] D.S. Malik and M. K. Sen, "Discrete Mathematical Structures", Thomson Learning, 2006. [4] C.L.Liu, "Elements of Discrete Mathematics", McGraw Hill Book Company.
 Graph Terminology, Isomorphism, Isomorphism as relations, Cut-Vertices, Menger's Theorem, Planar graphs, Euler's formula (proof), four color problem (without proof) and the chromatic number of a graph, Euler graphs, Hamiltonian graphs, five color theorem, Vertex Coloring, Edge Colouring. Trees terminology, in order, preorder & post order trees traversal algorithms, directed graphs, Computer representation of graphs, Shortest path and minimal spanning trees and algorithms, Depth-first and breadth first searchs, trees associated with DFS & BFS, Connected components. Complexity Analysis and proof of correctness of the graph MST, traversal and Shortest path algorithms. Text/Reference: [1] J.P. Tremblay & R. Mamohan, "Discrete Mathematical Structure with Application to Computer Science," TMH, New Delhi (2000). [2] Kolman, Busby & Ross "Discrete Mathematical Structures", PHI/Pearson. [3] D.S. Malik and M. K. Sen, "Discrete Mathematical Structures", Thomson Learning, 2006. [4] C.L.Liu, "Elements of Discrete Mathematics", McGraw Hill Book Company. [5] G. Haggard, J. Schlipf and S. Whitesides, "Discrete Mathematics for Computer Science", Thomson Learning, 2006.
 Graph Terminology, Isomorphism, Isomorphism as relations, Cut-Vertices, Menger's Theorem, Planar graphs, Euler's formula (proof), four color problem (without proof) and the chromatic number of a graph, Euler graphs, Hamiltonian graphs, five color theorem, Vertex Coloring, Edge Colouring. Trees terminology, in order, preorder & post order trees traversal algorithms, directed graphs, Computer representation of graphs, Shortest path and minimal spanning trees and algorithms, Depth-first and breadth first searchs, trees associated with DFS & BFS, Connected components. Complexity Analysis and proof of correctness of the graph MST, traversal and Shortest path algorithms. Text/Reference: [1] J.P. Tremblay & R. Mamohan, "Discrete Mathematical Structure with Application to Computer Science," TMH, New Delhi (2000). [2] Kolman, Busby & Ross "Discrete Mathematical Structures", PHI/Pearson. [3] D.S. Malik and M. K. Sen, "Discrete Mathematical Structures", Thomson Learning, 2006. [4] C.L.Liu, "Elements of Discrete Mathematics", McGraw Hill Book Company. [5] G. Haggard,J. Schlipf and S. Whitesides, "Discrete Mathematics for Computer Science", Thomson Learning, 2006. [6] J. L. Hein, "Discrete Structures, Logic and Computability", Narosa, 2002.
 Graph Terminology, Isomorphism, Isomorphism as relations, Cut-Vertices, Menger's Theorem, Planar graphs, Euler's formula (proof), four color problem (without proof) and the chromatic number of a graph, Euler graphs, Hamiltonian graphs, five color theorem, Vertex Coloring, Edge Colouring. Trees terminology, in order, preorder & post order trees traversal algorithms, directed graphs, Computer representation of graphs, Shortest path and minimal spanning trees and algorithms, Depth-first and breadth first searchs, trees associated with DFS & BFS, Connected components. Complexity Analysis and proof of correctness of the graph MST, traversal and Shortest path algorithms. Text/Reference: J.P. Tremblay & R. Mamohan, "Discrete Mathematical Structure with Application to Computer Science," TMH, New Delhi (2000). Kolman, Busby & Ross "Discrete Mathematical Structures", PHI/Pearson. D.S. Malik and M. K. Sen, "Discrete Mathematical Structures", Thomson Learning, 2006. C.L.Liu, "Elements of Discrete Mathematics", McGraw Hill Book Company. G. Haggard, J. Schlipf and S. Whitesides, "Discrete Mathematics for Computer Science", Thomson Learning, 2006. J. L. Hein, "Discrete Structures, Logic and Computability", Narosa, 2002. Neal Koblitz, "A course in number theory and cryptography", Springer – Verlag, 1994.
 Graph Terminology, Isomorphism, Isomorphism as relations, Cut-Vertices, Menger's Theorem, Planar graphs, Euler's formula (proof), four color problem (without proof) and the chromatic number of a graph, Euler graphs, Hamiltonian graphs, five color theorem, Vertex Coloring, Edge Colouring. Trees terminology, in order, preorder & post order trees traversal algorithms, directed graphs, Computer representation of graphs, Shortest path and minimal spanning trees and algorithms, Depth-first and breadth first searchs, trees associated with DFS & BFS, Connected components. Complexity Analysis and proof of correctness of the graph MST, traversal and Shortest path algorithms. Text/Reference: [1] J.P. Tremblay & R. Mamohan, "Discrete Mathematical Structure with Application to Computer Science," TMH, New Delhi (2000). [2] Kolman, Busby & Ross "Discrete Mathematical Structures", PHI/Pearson. [3] D.S. Malik and M. K. Sen, "Discrete Mathematical Structures", Thomson Learning, 2006. [4] C.L.Liu, "Elements of Discrete Mathematics", McGraw Hill Book Company. [5] G. Haggard,J. Schlipf and S. Whitesides, "Discrete Mathematics for Computer Science," Thomson Learning, 2006. [6] J. L. Hein, "Discrete Structures, Logic and Computability", Narosa, 2002. [7] Neal Kobliz, "A course in number theory and cryptography", Springer – Verlag, 1994. [8] V. Shoup, "A Computational Introduction to Number Theory and Algebra", CUP, 2005.
 Graph Terminology, Isomorphism, Isomorphism as relations, Cut-Vertices, Menger's Theorem, Planar graphs, Euler's formula (proof), four color problem (without proof) and the chromatic number of a graph, Euler graphs, Hamiltonian graphs, five color theorem, Vertex Coloring, Edge Colouring. Trees terminology, in order, preorder & post order trees traversal algorithms, directed graphs, Computer representation of graphs, Shortest path and minimal spanning trees and algorithms, Depth-first and breadth first searchs, trees associated with DFS & BFS, Connected components. Complexity Analysis and proof of correctness of the graph MST, traversal and Shortest path algorithms. Text/Reference: J.P. Tremblay & R. Mamohan, "Discrete Mathematical Structure with Application to Computer Science," TMH, New Delhi (2000). Kolman, Busby & Ross "Discrete Mathematical Structures", PHI/Pearson. D.S. Malik and M. K. Sen, "Discrete Mathematical Structures", Thomson Learning, 2006. C.L.Liu, "Elements of Discrete Mathematics", McGraw Hill Book Company. G. Haggard, J. Schlipf and S. Whitesides, "Discrete Mathematics for Computer Science", Thomson Learning, 2006. J. L. Hein, "Discrete Structures, Logic and Computability", Narosa, 2002. Neal Koblitz, "A course in number theory and cryptography", Springer – Verlag, 1994.
 Graph Terminology, Isomorphism, Isomorphism as relations, Cut-Vertices, Menger's Theorem, Planar graphs, Euler's formula (proof), four color problem (without proof) and the chromatic number of a graph, Euler graphs, Hamiltonian graphs, five color theorem, Vertex Coloring, Edge Colouring. Trees terminology, in order, preorder & post order trees traversal algorithms, directed graphs, Computer representation of graphs, Shortest path and minimal spanning trees and algorithms, Depth-first and breadth first searchs, trees associated with DFS & BFS, Connected components. Complexity Analysis and proof of correctness of the graph MST, traversal and Shortest path algorithms. Text/Reference: [1] J.P. Tremblay & R. Mamohan, "Discrete Mathematical Structure with Application to Computer Science," TMH, New Delhi (2000). [2] Kolman, Busby & Ross "Discrete Mathematical Structures", PHI/Pearson. [3] D.S. Malik and M. K. Sen, "Discrete Mathematical Structures," Thomson Learning, 2006. [4] C.L.Liu, "Elements of Discrete Mathematics," McGraw Hill Book Company. [5] G. Haggard, J. Schlipf and S. Whitesides, "Discrete Mathematics for Computer Science," Thomson Learning, 2006. [6] J. L. Hein, "Discrete Structures, Logic and Computability", Narosa, 2002. [7] Neal Koblitz, "A course in number theory and cryptography", Springer – Verlag, 1994. [8] V. Shoup, "A Computational Introduction to Number Theory and Algebra", CUP, 2005. [9] John F. Humphreys, "A Course in Group Theory", OUP, 2001. [10] G. Chartrand, P. Zhang, "Introduction to graph theory", TMH, 2005. [11] A.V. Aho, J. E. Hopcroft, J. D. Ulman "The Design & Analysis of Computer Algorithms", Pearson
 Graph Terminology, Isomorphism, Isomorphism as relations, Cut-Vertices, Menger's Theorem, Planar graphs, Euler's formula (proof), four color problem (without proof) and the chromatic number of a graph, Euler graphs, Hamiltonian graphs, five color theorem, Vertex Coloring, Edge Colouring, Trees terminology, in order, preorder & post order trees traversal algorithms, directed graphs, Computer representation of graphs, Shortest path and minimal spanning trees and algorithms, Depth-first and breadth first searchs, trees associated with DFS & BFS, Connected components. Complexity Analysis and proof of correctness of the graph MST, traversal and Shortest path algorithms. Text/Reference: [1] J.P. Tremblay & R. Mamohan, "Discrete Mathematical Structure with Application to Computer Science," TMH, New Delhi (2000). [2] Kolman, Busby & Ross "Discrete Mathematical Structures", PHI/Pearson. [3] D.S. Malik and M. K. Sen, "Discrete Mathematical Structures", Thomson Learning, 2006. [4] C.L.Liu, "Elements of Discrete Mathematics", McGraw Hill Book Company. [5] G. Haggard, J. Schlipf and S. Whitesides, "Discrete Mathematics for Computer Science", Thomson Learning, 2006. [6] J. L. Hein, "Discrete Structures, Logic and Computability", Narosa, 2002. [7] Neal Koblitz, "A course in number theory and cryptography", Springer – Verlag, 1994. [8] V. Shoup, "A Computational Introduction to Number Theory and Algebra", CUP, 2005. [9] John F. Humphreys, "A Course in Group Theory", OUP, 2001. [10] G. Chartrand, P. Zhang, "Introduction to graph theory", TMH, 2005. [11] A.V. Aho, J. E. Hopcroft, J. D. Ulman "The Design & Analysis of Computer Algorithms", Pearson Education.
 Graph Terminology, Isomorphism, Isomorphism as relations, Cut-Vertices, Menger's Theorem, Planar graphs, Euler's formula (proof), four color problem (without proof) and the chromatic number of a graph, Euler graphs, Hamiltonian graphs, five color theorem, Vertex Coloring, Edge Colouring. Trees terminology, in order, preorder & post order trees traversal algorithms, directed graphs, Computer representation of graphs, Shortest path and minimal spanning trees and algorithms, Depth-first and breadth first searchs, trees associated with DFS & BFS, Connected components. Complexity Analysis and proof of correctness of the graph MST, traversal and Shortest path algorithms. Text/Reference: J.P. Tremblay & R. Mamohan, "Discrete Mathematical Structure with Application to Computer Science," TMH, New Delhi (2000). Kolman, Busby & Ross "Discrete Mathematical Structures", PHI/Pearson. D.S. Malik and M. K. Sen, "Discrete Mathematical Structures", Thomson Learning, 2006. C.L.Liu, "Elements of Discrete Mathematics", McGraw Hill Book Company. G. Haggard,J. Schlipf and S. Whitesides, "Discrete Mathematics for Computer Science", Thomson Learning, 2006. J. L. Hein, "Discrete Structures, Logic and Computability", Narosa, 2002. Neal Koblitz, "A course in number theory and cryptography", Springer – Verlag, 1994. V. Shoup, "A Computational Introduction to Number Theory and Algebra", CUP, 2005. John F. Humphreys, "A Course in Group Theory", OUP, 2001. G. Chartrand, P. Zhang, "Introduction to graph theory", TMH, 2005. J. H. Hom, Discrete, J. D. Ulman "The Design & Analysis of Computer Algorithms", Pearson Education. T. H. Cormen, C. E. Leiserson, R. L. Rivest "Introduction to Algorithms", PHI/Pearson.
 Graph Terminology, Isomorphism, Isomorphism as relations, Cut-Vertices, Menger's Theorem, Planar graphs, Euler's formula (proof), four color problem (without proof) and the chromatic number of a graph, Euler graphs, Hamiltonian graphs, five color theorem, Vertex Coloring, Edge Colouring. Trees terminology, in order, preorder & post order trees traversal algorithms, directed graphs, Computer representation of graphs, Shortest path and minimal spanning trees and algorithms, Depth-first and breadth first searchs, trees associated with DFS & BFS, Connected components. Complexity Analysis and proof of correctness of the graph MST, traversal and Shortest path algorithms. Text/Reference: [1] J.P. Tremblay & R. Mamohan, "Discrete Mathematical Structure with Application to Computer Science," TMH, New Delhi (2000). [2] Kolman, Busby & Ross "Discrete Mathematical Structures", PHI/Pearson. [3] D.S. Malik and M. K. Sen, "Discrete Mathematical Structures", Thomson Learning, 2006. [4] C.L.Liu, "Elements of Discrete Mathematics," McGraw Hill Book Company. [5] G. Haggard, J. Schlipf and S. Whitesides, "Discrete Mathematics for Computer Science", Thomson Learning, 2006. [6] J. L. Hein, "Discrete Structures, Logic and Computability", Narosa, 2002. [7] Neal Koblitz, "A course in number theory and cryptography", Springer – Verlag, 1994. [8] V. Shoup, "A Computational Introduction to Number Theory and Algebra", CUP, 2005. [9] John F. Humphreys, "A Course in Group Theory", OUP, 2001. [10] G. Chartrand, P. Zhang, "Introduction to graph theory", TMH, 2005. [11] A.V. Aho, J. E. Hopcroft, J. D. Ulman "The Design & Analysis of Computer Algorithms", Pearson Education. [12] T. H. Cormen, C. E. Leiserson, R. L. Rivest "Introduction to Algorithms", Pearson.
 Graph Terminology, Isomorphism, Isomorphism as relations, Cut-Vertices, Menger's Theorem, Planar graphs, Euler's formula (proof), four color problem (without proof) and the chromatic number of a graph, Euler graphs, Hamiltonian graphs, five color theorem, Vertex Coloring, Edge Colouring. Trees terminology, in order, preorder & post order trees traversal algorithms, directed graphs, Computer representation of graphs, Shortest path and minimal spanning trees and algorithms, Depth-first and breadth first searchs, trees associated with DFS & BFS, Connected components. Complexity Analysis and proof of correctness of the graph MST, traversal and Shortest path algorithms. Text/Reference: J.P. Tremblay & R. Mamohan, "Discrete Mathematical Structure with Application to Computer Science," TMH, New Delhi (2000). Kolman, Busby & Ross "Discrete Mathematical Structures", PHI/Pearson. D.S. Malik and M. K. Sen, "Discrete Mathematical Structures", Thomson Learning, 2006. C.L.Liu, "Elements of Discrete Mathematics", McGraw Hill Book Company. G. Haggard,J. Schlipf and S. Whitesides, "Discrete Mathematics for Computer Science", Thomson Learning, 2006. J. L. Hein, "Discrete Structures, Logic and Computability", Narosa, 2002. Neal Koblitz, "A course in number theory and cryptography", Springer – Verlag, 1994. V. Shoup, "A Computational Introduction to Number Theory and Algebra", CUP, 2005. John F. Humphreys, "A Course in Group Theory", OUP, 2001. G. Chartrand, P. Zhang, "Introduction to graph theory", TMH, 2005. J. H. Hom, Discrete, J. D. Ulman "The Design & Analysis of Computer Algorithms", Pearson Education. T. H. Cormen, C. E. Leiserson, R. L. Rivest "Introduction to Algorithms", PHI/Pearson.

Paper ID: 15212		L	T/P	С
Code: IT212	Paper : Software Engineering	3	1	4

Skill Development/Employability/Enterpreneurship

UNIT – 1:

Introduction:

Software Crisis, Software Processes, Software life cycle models: Waterfall, Prototype, Evolutionary and Spiral models, Overview of Quality Standards like ISO 9001, SEI-CMM.

Software Metrics:

Size Metrics like LOC, Token Count, Function Count, Design Metrics, Data Structure Metrics, Information Flow Metrics.

UNIT – 2:

Software Project Planning:

Cost estimation, static, Single and multivariate models, COCOMO model, Putnam Resource Allocation Model, Risk management.

Software Requirement Analysis and Specifications:

Problem Analysis, Data Flow Diagrams, Data Dictionaries, Entity-Relationship diagrams, Software Requirement and Specifications, Behavioural and non-behavioural requirements, Software Prototyping.

UNIT – 3:

Software Design:

Cohesion & Coupling, Classification of Cohesiveness & Coupling, Function Oriented Design, Object Oriented Design, User Interface Design.

Software Reliability:

Failure and Faults, Reliability Models: Basic Model, Logarithmic Poisson Model, Calender time Component, Reliability Allocation.

UNIT – 4:

Software Testing:

Software process, Functional testing: Boundary value analysis, Equivalence class testing, Decision table testing, Cause effect graphing, Structural testing: Path testing, Data flow and mutation testing, unit testing, integration and system testing, Debugging, Testing Tools & Standards.

Software Maintenance:

Management of Maintenance, Maintenance Process, Maintenance Models, Reverse Engineering, Software Re-engineering, Configuration Management, Documentation.

Text:

- R. S. Pressman, "Software Engineering A practitioner's approach", 3rd ed., McGraw Hill Int. Ed., 1992.
- 2. K.K. Aggarwal & Yogesh Singh, "Software Engineering", New Age International, 2001

- 1. R. Fairley, "Software Engineering Concepts", Tata McGraw Hill, 1997.
- 2. P. Jalote, "An Integrated approach to Software Engineering", Narosa, 1991.
- 3. Stephen R. Schach, "Classical & Object Oriented Software Engineering", IRWIN, 1996.
- 4. James Peter, W Pedrycz, "Software Engineering", John Wiley & Sons
- 5. I. Sommerville, "Software Engineering", Addison Wesley, 1999.

Code: IT 301 Paper ID: 15301

Paper: Theory of Computation

Unit I

Automata and Language Theory: Chomsky Classification, Finite Automata, Deterministic Finite Automata (DFA), Non-Deterministic Finite Automata (NFA), Regular Expressions, Equivalence of DFAs, NFAs and Regular Expressions, Closure properties of Regular grammar, Non-Regular Languages, Pumping Lemma.

Unit II

Context Free Languages: Context Free Grammar (CFG), Parse Trees, Push Down Automata (deterministic and non-deterministic) (PDA), Equivalence of CFGs and PDAs, Closure properties of CFLs, Pumping Lemma, Parsing, LL(K) grammar.

Unit III

Turing Machines and Computability Theory: Definition of Turing Machine, Extensions of Turing machines, Non – deterministic Turing machines, Equivalence of various Turing Machine Formalisms, Church – Turing Thesis, Decidability, Halting Problem, Reducibility, Recursion Theorem.

Unit IV

Complexity Theory: Time and Space measures, Hierachy theorems, Complexity classes P, NP, L, NL, PSPACE, BPP and IP, complete problems, P versus NP conjecture, quantiers and games, provably hard problems, relativized computation and oracles, probabilistic computation, interactive proof systems.

Text:

- 1. M. Sipser, "Introduction to the Theory of Computation", Thompson Press, 2006.
- 2. J. Hopcroft, R. Motwani, and J. Ullman, "Introduction to Automata Theory, Language and Computation", Pearson, 2nd Ed, 2006.

- 1. H. R. Lewis and C. H. Papadimitriou, "Elements of the Theory of Computation", Pearson, 2nd Ed, 1997.
- 2. D. Cohen, "Introduction to Computer Theory, Wiley, N. York, 2nd Ed, 1996.
- 3. J. C. Martin, "Introduction to Languages and the Theory of Computation", TMH, 2nd Ed. 2003.
- 4. K. L. Mishra and N. Chandrasekharan, "Theory of Computer Science", PHI, 1996.

Introduction: Block diagram of Electrical communication system, Radio communication: Types of communications, Analog, pulse and digital, Types of signals, Fourier transform for various signals, Fourier spectrum, Power spectral density, Auto correlation, convolution.

Amplitude Modulation : Need for modulation, types of AM Methods (AM,DSBSC, SSBSC), power and bandwidth requirements, generation and demodulation of AM: Diode detector, product detector, product demodulation for DSBSC&SSBSC.

Unit II

Angle modulation: Frequency and phase modulations, advantages of FM over AM, Bandwidth consideration, Narrow band and Wide band FM, comparison of FM&PM Pulse Modulations: Sampling, Nyquist rate of sampling, samping theorem for band limited signals, PAM, regeneration of baseband signal, PWM&PPM, Time division Multiplexing, FDM, Asynchronous Multiplexing,

Unit III

Digital communication: Advantages, Block diagram of PCM, Quantization, Effect of Quantization, Quantization error, Base band digital signal, DM,ADM,ADPCM and comparison.

Digital modulation: ASK,FSK,PSK,DPSK,QPSK and QAM demodulation, coherent and incoherent reception, Modems.

Unit IV

Information theory : Concept of Information, Rate of information and entropy, Source coding for optimum rate of information, Coding efficiency, Shannon_Fano and Huffman coding. noise, noise temperature, S/N ratio & Noise figure.S/N trade off. Error control coding: Introduction, Error detection and correction codes, block codes and convolution codes.

Text:

- W. Tomasi, "Electronic communications systems(baics through advanced)", Pearson Education, 2th ed, 2004.
- 2. H. Taub and D. L. Schilling, "Principles of Communication Systems", TMH, 2003.

- 1. J. C. Hancock, "An Introduction to the Principles of Communication Theory", McGraw Hill, 1961.
- 2. S. Haykins, "Introduction to Analog and Digital Communication", Wiley, 1986.
- 3. G. Kennedy and B. Davis, "Electronic communication systems", TMH, 1993.
- 4. J. G. Proakis, M. S.alehi, "Communications Systems Engineering", PHI, 2nd ed, 2002.
- 5. D. Roddy and J. Coolen, "Electronic Communications", PHI, 1995.
- 6. S. Haykins, "Communication Systems", Wiley, 2001.

Code: IT 305 C: 4 Paper ID: 15305

L:3 T/P:1

Paper: Computer Architecture Skill Development/Employability

Unit I

Computer Arithmetic and Register transfer language:

Unsigned notation, signed notation, binary coded decimal, floating point numbers, **IEEE 754 floating point standard**, Micro-operation, Bus and Memory Transfers, Bus Architecture, Bus Arbitration, Arithmetic Logic, Shift Micro operation, Arithmetic Logic Shift Unit.

Unit II

Instruction set architecture & computer organization

Levels of programming languages, assembly language instructions, **8085 instruction set architecture**, Instruction Codes, Computer Registers, Computer Instructions, Timing & Control, Instruction Cycle, Memory Reference Instructions, Input-Output and Interrupts

Unit III

Control Design:

Instruction sequencing & interpretation, Hardwired & Micro Programmed (Control Unit), Micrprogrammed computers, Micro coded CPU: Pentium processor

CPU Design

Specifying a CPU, Design & implementation of simple CPU, General Register Organization, Stack Organization, Instruction Formats, Addressing Modes, Internal architecture of 8085 microprocessor.

Unit IV

Memory organization

Memory Technology, Main Memory (RAM and ROM Chips), Virtual memory, Highspeed memories

Input/Output organization

Asynchronous Data Transfers, Programmed I/O, interrupts, Direct memory Access, Serial communication, UARTs, **RS-232-C & RS-422** standard

Text:

- 1. J. D. Carpinelli, "Computer Systems Organization and Architecture", Pearson Education, 2006.
- 2. J. P. Hayes, "Computer Architecture and Organization", McGraw Hill, 1988.

- 1. J. L Hennessy and D. A. Patterson, "Computer Architecture: A quantitative approach", Morgon Kauffman, 1992.
- 2. W. Stallings, "Computer organization and Architecture", PHI, 7th ed, 2005.
- 3. B. Parhami, "Computer Architecture: From Microprocessors to Supercomputers", Oxford University press, 2006.

Code: IT 307 PaperID: 15307 L:3 T/P:1 C: 4

Paper : Digital Signal Processing Skill Development/Employability

Unit I

Signals and signal Processing: Characterization & classification of signals, typical Signal Processing operations, example of typical signals, typical Signals Processing applications.

Time Domain Representation of Signals & Systems: Discrete Time Signals, Operations on Sequences, the sampling process, Discrete-Time systems, Time-Domain characterization of LTI Discrete-Time systems.

Unit II

Transform-Domain Representation of Signals: Discrete Fourier Transform (DFT), DFT properties, computation of the DFT of real sequences, Linear Convolution using the DFT. Z-transforms, Inverse z-transform, properties of z-transform.

Unit III

Computation of the Discrete Fourier Transform: Computational complexity of the direct computation of the DFT, different approaches for reducing the computations, Decimation-in-Time FFT algorithms, Decimation-in-frequency FFT algorithms.

Unit IV

Digital Filter Structure: Block Diagram representation, Signal Flow Graph Representation, Signal Flow Graph Representation, FIR Digital Filter Structure, IIR Filter Structures, Parallel all pass realization of IIR Filter design based on Frequency Sampling approach.

Text / Reference:

- 1. A. Y. Oppenhein and R. W. Schater, "Digital Signal Processing", PHI 1975.
- 2. Sanjit K. Mitra, "Digital Signal Processing: A Computer based approach", TMH, 2005.
- 3. J. G. Proakis and D.G. Manolakis, "Digital Signal Processing, Principals, Algorithms, and Applications", Pearson Education, 4th ed., 2007.
- 4. A. Y. Oppenhein, R. W. Schater and J. R. Buck, "Discrete Time Signal Processing", PHI 1999.

Code No.: IT 309 Paper ssID: 15309 L:3 T/P:1 C: 4 Paper: Object Oriented Software Engineering

Skill Development/Employability

Unit I

Introduction to Software Engineering: Software Engineering Development, Software Life Cycle Models, Standards for developing life cycle models.

Object Methodology & Requirement Elicitation: Introduction to object Oriented Methodology, Overview of Requirements Elicitation, Requirements Model-Action & Use cases, Requirements Elicitation Activities, Managing Requirements Elicitation.

Unit II

Architecture: Model Architecture, Requirements Model, Analysis Model, Design Model, Implementation Model, Test Model

Unit III

Modeling with UMLZ: Basic Building Blocks of UML, A conceptual Model of UML, Basic Structural Modeling, UML Diagram System Design: Design concepts & activities, Design Models, Block design, Testing

Unit IV

Testing Object Oriented Systems: Introduction, Testing Activities & Techniques, The Testing Process, Managing Testing

Case Studies

Text Books:

- 1. I. Jacobson, "Object-Oriented Software Engineering: A Use Case Driven Approach", Pearson, 1992
- 2. B. Breugge and A. H. Dutoit, "Object Oriented Software Engineering: Using UML, Patterns, and Java", Prentice Hall, 2004.
- 3. G. Booch, J. Rumbaugh and I. Jacboson, "The Unified Modeling Language User Guide" Addison-Wesley, 2005.

Introduction to HDLs, Design Flow, Synthesis, VHDL Basics, Data types, Opertors, concurrent coding, Structural and Behavioral Modeling, Design of Adder, Subtractor, Decoder, Encoder, Code converter, Multiplexer, VHDL for Combinational Circuits Blocks

Unit II

Sequential Code, Control Structure, Attributes, VHDL for Flip – Flops, Registers, Counters, Signals and Variable, Bus Structure, Implementation of Bus Structure using Multiplexer, Implementation of simple processor

Unit III

State Machine, State diagram, state table, state assignment, RTL for state Machine Design Styles, Mealy State Model, Specificatin of Mealy FSM using VHDL, VHDL for Moore type FSM, Specify the state assignment in VHDL code, Design of Serial adder using FSM.

Unit IV

Design and Implementation of Arbiter Circuit, Algorithm State Machine Charts, VHDL for SRAM, VHDL Design for Shift-and –add Multiplier, VHDL Design of Floating point Adder circuit, VHDL timing, modeling medeling with Delta time Delays, Inertial/Transport Delay

Text:

- 1. B. Vransesic, "Fundamental of Digital Logic Design with VHDL", TMH, 2007.
- 2. V. A. Pedroni, "Circuit Design with VHDL", PHI, 2005

- 1. B. Cohen, "VHDL coding Styles and Methodologies", Springer, 2005
- 2. C. H. Roth, "Digital System Design using VHDL", Thomson Learning 2005
- 3. J F Wakerly, "Digital Design Principles and Practice", Pearson Education Press 2007
- 4. S. Ghose, "Hardware Description Languages", PHI 2005
- 5. P.J. Ashendern, "The Designer Guide to VHDL", Morgan Kaufmann, 2005
- 6. D J Smith, "HDL Chip Design", Don Publisher, 2005
- 7. D. L. Perry, "VHDL programming", TMH, 2005
- 8. K.C. Chang and M Loeb, "Digital Systems Design with VHDL and Synthesis", Wiley, 2005
- 9. J. Bhaskar, "A VHDL Synthesis Primer", BSP, 2006.
- 10. J. Bhaskar, "A VHDL Primer", Pearson Education, 2005
- 11. S. Lee, "Advanced Digital Logic Design Using VHDL, State Machines, and Synthesis for FPGA's", Morgan Kaufmann, 2007

Introduction – Microprocessors Evolution and types (Intel 4004 – Pentium IV and road maps), Overview of 8085, 8086, 80286, 80386, 80486, Pentium processors and Micontrollers.

Unit II

Architecture of 8086 – Register Organization, Execution unit, Bus Interface Unit, Signal Description, Physical Memory Organization, General Bus Operation, I/O addressing capabilities, Minimum mode and maximum mode timing diagrams, Comparison with 8088

Unit III

8086 programming – Assembly language program development tools (editor, linker, loader, locator, Assembler, emulator and Debugger), Addressing modes, Instruction set descriptions, Assembler directives and operators, Procedures and Macros. (Writing programs for use with an assembler MASM)

Unit IV

8086 Interfacing – Interfacing 8086 with semiconductor memory, 8255, 8254/ 8243, 8251, 8279, A/D and D/A converters. Numeric processor 8087, I/O processor 8089 tightly coupled and loosely coupled systems.

Text:

- 1. D.V. Hall, "Microprocessors and Interfacing", TMH, 2nd Ed. 1991.
- 2. Y.-C. Liu and G. A. Gibson, "Microprocessor Systems: The 8086/8088 family Architecture, Programming & Design", PHI, 2000.

- 1. J. L. Antonakes, "An Introduction to the Intel Family of Microprocessors", Thomson, 1996.
- 2. K. J. Ayala, "The 8086 microprocessor", Thomson, 1995
- 3. Peter Able, "IBM PC assembly language programming", PHI, 2000.
- 4. A. K. Ray and K M Bhurchandi, "Advanced Microprocessors and Peripherals", TMH, 2000.

Introduction: Uses of Computer Networks, Network and Protocol Architecture, Reference Model (ISO-OSI, TCP/IP-Overview

Physical Layer: Data and signals, Transmission impairments, Data rate limits, performance factors, Transmission media, Wireless transmission, Telephone system (Structure, trunks, multiplexing & Switching)

Paper: Computer Networks

Unit II

Data Link Layer: Design issues, Error detection & correction, Data Link Protocols, sliding window protocols, HDLC, WAN Protocols.

Unit III

Medium Access Sub layer: Channel allocation problem, multiple access protocols, IEEE standard 802.3 & 802.11 for LANS and WLAN, high-speed LANs, Network Devices-repeaters, hubs, switches bridges.

Unit IV

Network Layer: Design issues, Routing algorithms, congestion control algorithms, Internetwork protocols, Internetwork operation

Text :

- 1. B. A Forouzan.,"Data Communications & Networking",4th Ed, Tata McGraw Hill, 2007.
- 2. A. S. Tanenbaum. "Computer networks", Pearson Education, 4th ed , 2006.

- W. Stallings, "Data and Computer Communications", Pearson Education, 8th Ed, 2007.
- D. E. Comer., "Computer Networks & Internets", Pearson Education, 4th Ed, 2007
- 3. N. Olifer and V. Olifer, "Computer Networks", Wiley, 2006
- 4. L. L. Peterson and B. S. Davie, "Computer Networks", Elsevier, 4th Ed, 2007.
- L. A. Gallo, "Computer Communications & networking technologies", Cengage Learning, India 1st Ed, 2007.

Code:	IT 3	306
Paper	ID:	15306

L:3 T/P:1 C: 4 Paper: Algorithm Analysis and Design

Unit I

Growth of Functions, Summations, Algorithm Design Paradigms, Sorting in Linear Time: Counting sort, Radix Sort, Bucket Sort, Medians and Order Statistics, Disjoint Set operations, Linked List representation of disjoint sets, disjoint set forests.

Unit II

Matrix Chain Multiplication, Strassen's algorithm for matrix multiplication, LCS, Optimal Binary Search Tree, General Greedy approach Vs Dynamic Programming approachm Case studies: Knapsack problem, Huffman Coding Problem, Matroids

Unit III

Representation of Graphs, Breadth First Search, Depth First Search, Topological Sort, Strongly Connected Components, Algorithms of Kruskal's and Prim's, Dijkstra's and Bellman ford algorithm, All pair shortest path, Flyod Warshall Algorithm

Unit IV

String Matching: The Naïve String Matching Algorithm, The Rabin Karp Algorithm, String Matching with Finite Automata, The Knuth Morris Pratt Algorithm.

NP-Complete Problems: Polynomial Time Verification, NP-Completeness and Reducibility, NP Completeness proof, NP-Complete Problems.

Text:

1. T.H. Cormen, C.E. Leiserson, R.L. Rivest, "Introduction to Algorithms", PHI, 2001.

- 1. A .V. Aho, J . E . Hopcroft, J . D . Ulman "The Design & Analysis of Computer Algorithms", Addison Wesley, 1998.
- 2. U. Manber "Introduction to Algorithms A Creative Approach", Addison Wesley, 1998.
- 3. E. Horwitz and S. Sahani "Fundamentals of Computer Algorithms", Galgotia, 1998.
- 4. P. Linz, "An Introduction to Formal Languages and Automata", Narosa Publishing House, 2000.
- 5. J.E.Hopcroft and J.D.Ullman, "Introduction to Automata Theory, Languages and Computation", Addison Wesley, 1998.
- 6. K.L.Mishra & N.Chandrasekaran, "Theory of Computer Science", PHI,1996.
- 7. John C.Martin, "Introduction to Languages and Theory of Computation", TMH, 2001.

Paper: Compiler Design Skill Development/ Enterpreneurship

Unit I

Compiler Structure: Analysis-synthesis model of compilation, various phases of a compiler, tool based approach to compiler construction.

Lexical analysis: Interface with input parser and symbol table, token, lexeme and patterns, difficulties in lexical analysis, error reporting and implementation. Regular grammar & language definition, Transition diagrams, design of a typical scanner using LEX of Flex.

Unit II

Syntax Analysis: Context free grammars, ambiguity, associability, precedence, top down parsing, top down parsing, recursive descent parsing, transformation on the grammars, predictive parsing LL(1) grammar, Nor LL(1) grammar, Bottom up parsing, operator precedence grammars, LR parsers (SLR, LALR, LR), Design of a typical parser using YACC or Bison.

Unit III

Syntax directed definitions: Inherited and synthesized attributes, dependency graph, evaluation order, bottom up and top down evaluation of attributes, L- and S-attributed definitions. Type checking: type: type system, type expressions, structural and name equivalence of types, type conversion, overloaded function and operators, polymorphic function. Run time system: storage organization, activation tree, activation record, parameter passing symbol table, dynamic storage allocation. Intermediate code generation: intermediate representation, translation of declarations, assignments, Intermediate Code generation for control flow, Boolean expressions and procedure calls, implementation issues.

Unit IV

Code generation and instruction selection: Issues, basic blocks and flow graphs, register allocation, code generation, DAG representation of programs, code generation from DAGS, peep hole optimisation, code generator generators, specification of machine.

Code optimisation: source of optimisations, optimisation of basic blocks, loops, global dataflow analysis, solution to iterative dataflow equations, code improving transformations, dealing with aliases, data flow analysis of structured flow graphs.

Text Book:

- 1. K. C. Louden, "Compiler Construction, Principle and Practice" Thomson Books, 2006
- 2. Alfred V. Aho, Ravi Sethi & Jeffrey D. Ullman, "Compilers Priciples, Techniques & Tools". Pearson, 1998.
- 3. Levine, Mason, and Brown, "Lex & Yacc", O' Reilly, 1998.

- 1. S. S. Muchnick Harcourt Asra, "Advanced Compiler Design implementation", Morgan Kaufman, 2006.
- 2. Allen, "Modern Compiler Implementation in C", Cambridge Uty. Press 1997
- 3. Alan Holub, "Compiler Design in C", PHI, 2004.
- 4. Vinu V. Das, "Compiler Design using FLEX and YACC" PHI, 2005

Introduction to the Operating System: Type of OS: Batch System, Time Sharing System, Real Time System, Multiuser/Single User System, System Calls, System Call Interface.

Function of Operating System: Process Management, Memory Management, File Management, I/O Devices Management, Information Management.

Process Management: Process Concept, Process State, Process Control Block, Process Scheduling, Context Switch, CPU Scheduling, Scheduling Criteria, Scheduling Algorithms, Pre Emptive/ Non Preemptive Scheduling, Threads, Thread Structure.

Unit II

Kernel Design Concepts,

Process Synchronisation: Critical Section Problem, Race Condition, Synchronisation hardware, Semaphores, Classical Problems of Synchronisation.

Deadlocks: Characterisation, Methods for Handling Deadlocks Avoidance, Recovery and Detection.

Unit III

Design of Mini OS: MINIX

Memory Management: contiguous Allocation, External Internal Fragmentation, Paging Segmentation, Segmentation with Paging.

Virtual Memory: Virtual Memory Concept, Demand Paging, Page Replacement, PR Algorithms, Allocation of Frames, Thrashing, Working set Model.

Unit IV

Case study on DOS, Windows 2000, Windows XP, Vista, Linux

Information Management: File Concepts, Access Methods, Directory Structure, Allocation Methods: Contiguous Allocation, Linked Allocation, Indexed Allocation Free Space Management.

Device Management: Disk Structure, Disk Scheduling Algorithms, Disk Management,

Text:

- 1. Silbershatz and Galvin, "Operating System Concept", Addition Weseley, 2002.
- 2. Milan Milenkovic, Tata Mcgraw-Hill, 2000 "Operating System " Concepts & Design".
- 3. Godbole Ahyut "Operating System", PHI, 2003

- 1. Charles Crowley, "Operating Systems", Tata Mcgraw-Hill Edition
- 2. A. S. Tannenbaum, "Operating System Concept", Addition Weseley, 2002
- 3. Flynn, Mchoes, "Understanding Operating System", Thomson Press, Third Edition, 2003

Paper Code: IT-401 Paper ID: 15401 L:3 T/P:1 C:4 Paper: Advanced Computer Networks

Skill Development/Employability

Unit -I

Review of Physical, Data link layer, TCP/IP: Datalink Protocols; ARP and RARP.

Unit-II

Network Layer: Routing algorithms and protocols, Congestion control algorithm, Router Operation, Router configuration, Internetworking, IP Protocol, IPv6 (an overview), Network layer in ATM Network.

Unit-III

Transport Layer: Transport Service, Transport Protocol (TCP, UDP, ATM AAL layer protocol).

Application layer: Security, DNS, SNMP, RMON, Electronic Mail, WWW. Unit -IV Network Security: Firewalls (Application and packet filtering), Virtual Public Network.

Text:

1. Tananbaum A.S., "Computer Networks", 3rd Ed, PHI, 1999.

2. Laura Chappell (ed), "Introduction to Cisco Router Configuration", Techmedia, 1999.

References:

1. Black U., "Computer Networks-Protocols, Standards and Interfaces", PHI, 1996.

2. Stallings W., "Computer Communication Networks", PHI.

3 Stallings W., "SNMP, SNMPv2, SNMPv3, RMON 1&2", 3rd Ed., Addison Wesley, 1999.

4. Michael A. Miller, "Data & Network Communications", Vikas Publication.

5. William A. Shay, "Understanding Data Communications & Networks", Vikas Publication.

Introduction: What is software testing and why it is so hard?, Error, Fault, Failure, Incident, Test Cases, Testing Process, Limitations of Testing, No absolute proof of correctness, Overview of Graph Theory.

Unit-II

Functional Testing: Boundary Value Analysis, Equivalence Class Testing, Decision Table Based Testing, Cause Effect Graphing Technique. **Structural Testing:** Path testing, DD-Paths, Cyclomatic Complexity, Graph

Metrics, Data Flow Testing, Mutation testing.

Unit-III

Reducing the number of test cases:

Prioritization guidelines, Priority category, Scheme, Risk Analysis, Regression Testing, Slice based testing

Testing Activities: Unit Testing, Levels of Testing, Integration Testing, System Testing, Debugging, Domain Testing.

Unit-IV

Object Oriented Testing: Issues in Object Oriented Testing, Class Testing, GUI Testing, Object Oriented Integration and System Testing.

Testing Tools: Static Testing Tools, Dynamic Testing Tools, Characteristics of Modern Tools.

Text:

- 1. William Perry, "Effective Methods for Software Testing", John Wiley & Sons, New York, 1995.
- 2. Cem Kaner, Jack Falk, Nguyen Quoc, "Testing Computer Software", Second Edition, Van Nostrand Reinhold, New York, 1993.
- 3. Boris Beizer, "Software Testing Techniques", Second Volume, Second Edition, Van Nostrand Reinhold, New York, 1990.
- 4. Louise Tamres, "Software Testing", Pearson Education Asia, 2002

- 1. Roger S. Pressman, "Software Engineering A Practitioner's Approach", Fifth Edition, McGraw-Hill International Edition, New Delhi, 2001.
- 2. Boris Beizer, "Black-Box Testing Techniques for Functional Testing of Software and Systems", John Wiley & Sons Inc., New York, 1995.
- 3. K.K. Aggarwal & Yogesh Singh, "Software Engineering", New Age International Publishers, New Delhi, 2003.
- 4. Marc Roper, "Software Testing", McGraw-Hill Book Co., London, 1994.
- 5. Gordon Schulmeyer, "Zero Defect Software", McGraw-Hill, New York, 1990.
- 6. Watts Humphrey, "Managing the Software Process", Addison Wesley Pub. Co. Inc., Massachusetts, 1989.
- 7. Boris Beizer, "Software System Testing and Quality Assurance", Van Nostrand Reinhold, New York, 1984.
- 8. Glenford Myers, "The Art of Software Testing", John Wiley & Sons Inc., New York, 1979.

Paper Code: IT-405 Paper ID: 15405

Skill Development/Employability

Unit-I

Fundamentals of Distributed Computing:

Architectural models for distributed and mobile computing systems, Basic concepts in distributed computing.

Distributed Operating Systems:

Overview, network operating systems, Distributed file systems, Middleware, client/server model for computing.

Unit-II

Communication:

Layered protocols, RPC, RMI, Remote objects. Basic Algorithms in Message Passing Systems, Leader Election in Rings, and Mutual Exclusion in Shared Memory, Message Passing, PVM and MPI.

Process Concepts:

Threads, Clients and Servers, Code migration, Agent based systems, Distributed objects, CORBA, Distributed COM.

Unit-III

Synchronization:

Clock synchronization, Logical clocks, Election algorithms, Mutual exclusion, Distributed transactions, Naming concepts, Security in distributed systems

Distributed Databases:

Distributed Data Storage, Fragmentation & Replication, Transparency, Distributed Query Processing and Optimization, Distributed Transaction Modeling and concurrency Control, Distributed Deadlock, Commit Protocols.

Unit-IV

Parallel Processing:

Basic Concepts: Introduction to parallel processing, Parallel processing terminology, Design of parallel algorithms, Design of Parallel Databases, Parallel Query Evaluation.

Text Books:

- 1. Tannenbaum, A, Maarten Van Steen. Distributed Systems, Principles and Paradigm, Prentice Hall India, 2002
- Elmarsi, Navathe, Somayajulu, Gupta, "Fundamentals of Database Systems", 4th Edition, Pearson Education, 2007

Reference Books:

- 1. Tanenbaum, A, "Modern Operating Systems", 2nd Edition, Prentice Hall India, 2001.
- 2. Singhal and Shivaratri, "Advanced Concepts in Operating Systems", McGraw Hill, 1994
- 3. Attiya, Welch, "Distributed Computing", Wiley India, 2006
- 4. Coulouris, Dollimore and Kindberg, "Distributed Systems", Pearson, 2009.

Paper Code: IT-407 Paper ID: 15407

L:3 T/P:1 C:4

Paper: Artificial Intelligence

Skill Development/ Enterpreneurship

Unit-I
Introduction:
Introduction to intelligent agents
Problem solving:
Solving problems by searching : state space formulation, depth first and breadth first
search, iterative deepening
Unit-II
Intelligent search methods:
A* and its memory restricted variants
Production systems:
Design implementation and limitations, case studies
Unit-III
Game Playing:
Minimax, alpha-beta pruning
Knowledge and reasoning:
Propositional and first order logic, semantic networks, building a knowledge base,
inference in first order logic, logical reasoning systems
Planning:
STRIPS partial order planning, uncertain knowledge and reasoning, probabilistic
reasoning systems, Baysian networks
Unit-IV
Learning from observations:
Inductive learning, learning decision trees, computational learning theory,
Explanation
based learning
Applications:

Environmental Science, Robotics, Aerospace, Medical Scioence etc.

Text Book:

1. "AI" by Rich and Knight, Tata McGraw Hill, 1992

Reference Books:

1. "Neural Networks in Computer Intelligence" by KM Fu, McGraw Hill

2. "AI: A modern approach" by Russel and Norvig, Pearson Education

Paper Code: IT-409 Paper ID: 15409

L:3 T/P:1 C:4 Paper: Simulation & Modeling

Skill Development/ Enterpreneurship

Unit-I

Introduction to Simulation

Definitions of modeling & simulation, Concept of systems & system environment, components of a system, discrete & continuous systems, model of a system, types of models & simulation, Advantages, disadvantages, & pitfalls of simulation

General principles

Concepts in discrete-event simulation, event-driven simulation, world views, list processing Unit-II

Simulation software

History, Selection process, simulation in high level language(c,c++),desirable software features, general purpose simulation packages

Basic Probability & statistics

Terminology & concepts, Statistical modeling & probability distributions.

Random-Number generation

Properties of random numbers, generation of pseudo-random numbers, techniques for generating random numbers, test for randomness

Unit-III

Random-variate generation

Inverse transform, Direct transform, convlution, Accept-Reject

Queuing models

Characteristics, performance measures, steady-state behaviour, Networks of queues

Input Modeling

Data collection, Identifying distribution, parameter estimation, goodness-of-fit, multivariate & time series input models

Unit-IV

Verification & Validation of simulation models

Model building, verifaction & validation, verifcation of simulation models, calibration & validation of models

Techniques for increasing model validity & credibility

Output analysis

Types of simulations with respect to output analysis, stochastic nature of output data, measures of performance & their estimation, output analysis for termination simulations & steady state simulations **Brief overview** of discrete & continuous simulation languages and applications of simulation.

Text:

- 1. Banks J., Carson S., Nelson B.L.,"Discrete-Event System simulation",4th ed ,Pearson Education,New Delhi,2007
- 2. Law A.M., Kelton W.D., "Simulation Modeling and analysis",3rd ed,McGraw Hill education,Delhi.

- **1.** W. feller, "An introduction to probability theory and its applications," vol 183, wiley eastern Ltd. ND.
- 2. Gordon. G. System Simulation, PHI, delhi.

Paper Code: IT-411

L:3 T/P:1 C:4

Paper: Digital Image Processing

Paper ID: 15411

Skill Development/Employability/Enterpreneurship

UNIT – I

Introduction And Digital Image Fundamentals

The origins of Digital Image Processing, Examples of Fields that Use Digital Image Processing, Fundamentals Steps in Image Processing, Elements of Digital Image Processing Systems, Image Sampling and Quantization, Some basic relationships like Neighbours, Connectivity, Distance Measures between pixels, Linear and Non Linear Operations.

Image Enhancement in the Spatial Domain

Some basic Gray Level Transformations, Histogram Processing, Enhancement Using Arithmetic and Logic operations, Basics of Spatial Filters, Smoothening and Sharpening Spatial Filters, Combining Spatial Enhancement Methods.

UNIT – II

Image Enhancement in the Frequency Domain

Introduction to Fourier Transform and the frequency Domain, Smoothing and Sharpening Frequency Domain Filters, Homomorphic Filtering.

Image Restoration: A model of The Image Degradation / Restoration Process, Noise Models, Restoration in the presence of Noise Only Spatial Filtering, Pereodic Noise Reduction by Frequency Domain Filtering, Linear Position-Invarient Dedradations, Estimation of Degradation Function, Inverse filtering, Wiener filtering, Constrained Least Square Filtering, Geometric Mean Filter, Geometric Transformations.

UNIT – III

Image Compression

Coding, Interpixel and Psychovisual Redundancy, Image Compression models, Elements of Information Theory, Error free comparison, Lossy compression, Image compression standards.

Image Segmentation: Detection of Discontinuities, Edge linking and boundary detection, Thresholding, Region Oriented Segmentation, Motion based segmentation.

UNIT – IV

Representation and Description

Representation, Boundary Descriptors, Regional Descriptors, Use of Principal Components for Description, Introduction to Morphology, Some basic Morphological Algorithms.

Object Recognition: Patterns and Pattern Classes, Decision-Theoretic Methods, Structural Methods.

TEXT BOOKS:

1.Rafael C. Gonzalez & Richard E. Woods, "Digital Image Processing", 2nd Ed, Pearson Edu, 2004 2.A.K. Jain, "Fundamental of Digital Image Processing", PHI. 2003

REFERENCES:

- 1. Rosefield Kak, "Digital Picture Processing", 1999
- 2. W.K. Pratt, "Digital Image Processing", 2000

Paper Code: IT-413 L:3 T/P:1 C:4 Paper ID: 15413 Paper: Front End Design Tools & Web Technologies Skill Development/Employability/Enterpreneurship

<u>UNIT-I:</u>

History of the Internet and World Wide Web – HTML 4 protocols – HTTP, SMTP, POP3, MIME, IMAP. HTML Common tags- List, Tables, images, forms, Frames; Cascading Style sheets;, Introduction to Java Scripts, Objects in Java Script, Dynamic HTML with Java Script

UNIT-II

XML: Document type definition, XML Schemas, Document Object model, Presenting XML, Using XML Processors: DOM and SAX, Java Beans: Introduction to Java Beans, Advantages of Java Beans, BDK, Introspection, Using Bound properties, Bean Info Interface, Constrained properties, Persistence, Customizes, Java Beans API, Introduction to EJB's

UNIT-III

Web Servers and Servlets: Tomcat web server, Introduction to Servelets: Lifecycle of a Serverlet, JSDK, The Servelet API, The javax.servelet Package, Reading Servelet parameters, Reading Initialization parameters. The javax.servelet HTTP package, Handling Http Request & Responses, Using Cookies-Session Tracking, Security Issues, Introduction to JSP: The Anatomy of a JSP Page. JSP Application Design with MVC, JSP Application Development: Generating Dynamic Content, Using Scripting Elements Implicit JSP Objects, Conditional Processing Sharing Session and Application Data Memory Usage Considerations

UNIT IV:

Database Access : Database Programming using JDBC, Studying Javax.sql.* package,Accessing a Database from a JSP Page, Application – Specific Database Actions,Deploying JAVA Beans in a JSP Page, Introduction to struts framework..

TEXT BOOK

1. "Internet and world wide web – How to Program", Deitel & Deitel, Goldberg, Pearson Education

2. "Using HTML 4, XML and JAVA", Eric Ladd, Jim O' Donnel, Prentice Hall of India

3. "Java Server Pages ", Hans Bergsten, SPD O'Reilly

REFERENCES

1 "Web Technology", Rajkamal, Tata McGraw-Hill, 2001. KS:

2. Web Programming, building internet applications, Chris Bates 2nd edition, WILEY Dreamtech

3. The complete Reference Java 2 Fifth Edition by Patrick Naughton and Herbert Schildt. TMH

4. Programming world wide web-Sebesta, Pearson

5. Jakarta Struts Cookbook, Bill Siggelkow, S P D O'Reilly

Paper Code: IT-415 L:3 T/P:1 C:4 Paper ID: 15415 Paper: Advanced Java Programming Skill Development/Employability/Enterpreneurship

Unit 1 : Distributed Systems for Enterprise and Web-Based Applications, The Challenges of Scalability, Heterogeneity, Security, & Failure, Multi-Tiered Architectures, Messaging & Interfaces, JDBC: Java Database Connectivity, Messaging, Interfaces, RMI: Remote Method Invocation

Unit 2: MVC Architecture, Servlet, Servlet life cycle, web application structure, request response model, JSP pages and its elements JSP Architecture, JSP Page life cycle, Page directive attributes, JSP Tag libraries, JSTL Expression Language (EL), Writing a Custom Tag Library

Unit 3 Struts, Struts architecture, Struts classes - ActionForward, ActionForm, ActionServlet, Action classes, Understanding struts-config.xml, Struts Tiles, Combining Struts and Tiles, Tiles file structure, Understanding Tiles Definitions and Attributes, Creating a Definition in XML file and deploying, Creating a small application using Tiles

Unit 4 : Distributed System Models , J2EE: JNDI, EJB Entity Beans & Deployment Descriptors , J2EE: EJB Session Beans , Transactions , Web Services , Replication, Localization

Text Books :

- 1. Ivan Bayross, sharanam shah Java Server Programming, shroff Publishers
- 2. Holzner, Structs: Essential skills, TMH

- 1. Coulouris, G., Dollimore, J., & Kindberg, Distributed Systems, Concepts and Design , Pearson Education
- 2. Joe wigglesworth, McMilan Paula, Java Programming : advanced topic, Thomson

Unit-I

Writing Skills: Descriptive, Narrative, Argumentive and Discursive, Reflective and Literary-Evaluative Writing.

Technical Writing: Definition, Purpose and Characteristics of Technical Writing.

Unit-II

The Technical Writing Process: Prewriting Stage, The Writing Stage and the Postwriting stage.

Technical Writing Skills: Researching, Summarizing and Outlining, Visual Aids, Definition, Description, Set of Instructions.

Unit-III

Formal Formatting: Arrangement of Formal Elements, Front Material, Format Devices in the Body of Formal Report-Heading, Pagination, End Material—Citations, References and Bibliography, Appendix.

Unit-IV

Technical Writing Applications: Memorandums and Informal Format, Formal Format, Recommendations and Feasibility Reports, Proposals, Progress Reports, Analysis Reports Professional Communication, Letters and Job Applications.

Presentation and Meetings.

Text/References:

- 1. Forsyth, Sandy and Lesley Hutchison, "Practical Composition", Edinburgh Oliver and Boyd, 1981.
- 2. Sides, Charles H., "How to Write and Present Technical Information", Cambridge, Cambridge University Press, 1999.
- 3. Guffey, Mary Ellen, "Business Communication, Cincinnati", South-Western College Publishing, 2000.

Unit-I

Unit-I					
Parall	el computer models:				
The st	The state of computing, Classification of parallel computers, Multiprocessors and				
multic	omputers, Multivector and SIMD computers.				
Progra	am and network properties:				
Condit	tions of parallelism, Data and resource Dependences, Hardware and software				
paralle	lism, Program partitioning and scheduling, Grain Size and latency, Program				
	flow mechanisms, Control flow versus data flow, Data flow Architecture, Demand				
	mechanisms, Comparisons of flow mechanisms				
Unit-I	I				
Pipeli	ning:				
	pipeline processor, nonlinear pipeline processor, Instruction pipeline Design,				
Mechanisms for instruction pipelining, Dynamic instruction scheduling, Branch					
Handling techniques, branch prediction, Arithmetic Pipeline Design, Computer					
arithmetic principles, Static Arithmetic pipeline, Multifunctional arithmetic pipelines					
Unit-III					
Arithmetic for computers					
Signed and unsigned Numbers, Addition and Subtraction, Multiplication, Division,					
	ng Point.				
	erformance and Its factors, Evaluating performance of CPU.				
Unit –					
	ry Hierarchy				
	uction, The basics of Cache, Measuring and Improving of Cache Performance,				
	l Memory, Common framework for memory hierarchies tudy of PIV and AMD opteron memory hierarchies				
Text B	Kai Hwang, "Advanced computer architecture"; TMH. 2000				
1. 2.	D. A. Patterson and J. L. Hennessey, "Computer organization and design", Morgan				
2.	Kaufmann. 2nd Ed. 2002				
Refere	nce Books:				
1.	J.P.Hayes, "computer Architecture and organization"; MGH. 1998				
2.	Harvey G.Cragon,"Memory System and Pipelined processors"; Narosa Publication. 1998				
3.	V.Rajaranam & C.S.R.Murthy, "Parallel computer"; PHI. 2002				
4.	R.K.Ghose, Rajan Moona & Phalguni Gupta, "Foundation of Parallel Processing", Narosa				
_	Publications, 2003				
5.	Kai Hwang and Zu, "Scalable Parallel Computers Architecture", MGH. 2001				
6. 7.	Stalling W, "Computer Organisation & Architecture", PHI. 2000 D.Sima, T.Fountain, P.Kasuk, "Advanced Computer Architecture-A Design space				
/•	Approach,"Addison Wesley,1997.				
8.	M.J Flynn, "Computer Architecture, Pipelined and Parallel Processor Design"; Narosa				
	Publishing. 1998				
9.	D.A.Patterson, J.L.Hennessy, "Computer Architecture :A quantitative approach"; Morgan				

- D.A.Patterson, J.L.Hennessy, "Computer Architecture :A quantitative approach"; Morgan Kauffmann feb,2002.
- 10. Hwan and Briggs, "Computer Architecture and Parallel Processing"; MGH. 1999

Paper: Control Systems

Unit I

Definitions of Control Systems, Closed Loop and Open Loop Control, Examples of Control Systems; Laplace Transformation and Solution of Differential Equations; Concept of Mathematical model, Linear and Non-Linear Systems, Transfer Function with Simple Examples; Deriving transfer function of physical systems (Mechanical Translational Systems), Armature controlled and field controlled DC servomotors; AC servomotors and deriving their transfer functions; Block Diagram representation and Simplification.

Unit II

Signal Flow graph, Mason gain formula; Basic Control Actions: Proportional, integral and Derivative controllers, effect of feedback on control system; Transient and steady state response of first order system; Second order system, transient; Routh's Stability criterion, relative stability analysis; Static error co-efficients, position, velocity and acceleration error co-efficients.

Unit III

Root Locus Tecniques Bode Diagram, Minimum and Non-Minimum phase systems; Determination of Transfer from Bode Diagram; Polar Plots; Nyquist Plot; Stability Analysis using; Constant M & N Ioci.

Unit IV

Introduction to Compensators; Definitions of state, state variables, state space, representation of systems; Solution of time invariant, homogeneous state equation, state transition matrix and its properties; Z transform and solution of different equation; Transducers, synchro-transmitter; Stepper Motor, Tachogenerators; Rotating Amplifiers and Magnetic Amplifiers.

Text Books:

- 1. Ogata, "Modern Control Engineering" EEE, 4th Edition.
- 2. B. C. Kuo, "Automatic Control Systems" PHI 7th Edition.

- 1. D. R. Choudhary, "Modern Control Engineering", PHI, 2005.
- 2. I. J. Nagrath, M. Gopal, "Control System Engineering" New Age International, 2000.
- 3. N. K. Jain, "Automatic Control System Engineering" Dhanpat Rai, 2nd Edition.
- 4. Less Fenical, "Control Systems", Cenage Learning, 2008

L:3 T/P:1 C:4

Paper: Advanced Database Management Systems Skill Development/Employability

Unit-I

Relational Databases

Integrity Constraints revisited, Extended ER diagram, Relational Algebra & Calculus, Functional, Muiltivalued and Join Dependency, Normal Forms, Rules about functional dependencies.

Unit-II

Query Processing and Optimization

Valuation of Relational Operations, Transformation of Relational Expressions, Indexing and Query Optimization, Limitations of Relational Data Model, Null Values and Partial Information.

Objected Oriented and Object Relational Databases

Modeling Complex Data Semantics, Specialization, Generalization, Aggregation and Association, Objects, Object Identity, Equality and Object Reference, Architecture of Object Oriented and Object Relational Databases

Unit-III

Parallel and Distributed Databases

Distributed Data Storage – Fragmentation & Replication, Location and Fragment Transparency Distributed Query Processing and Optimization, Distributed Transaction Modeling and concurrency Control, Distributed Deadlock, Commit Protocols, Design of Parallel Databases, Parallel Query Evaluation.

Advanced Transaction Processing

Nested and Multilevel Transactions, Compensating Transactions and Saga, Long Duration Transactions, Weak Levels of Consistency, Transaction Work Flows, Transaction Processing Monitors.

Unit -IV

Data Mining

Knowledge Representation Using Rules, Association and Classification Rules, Sequential Patterns, Algorithms for Rule Discovery

Data Warehousing

Data Warehousing Architecture, Multidimensional Data Model, Update Propagation Case Study: Oracle Xi

Text Books:

1. Elmarsi, Navathe, Somayajulu, Gupta, "Fundamentals of Database Systems", 4th Edition, Pearson Education, 2007

2. Garcia, Ullman, Widom, "Database Systems, The complete book", Pearson Education, 2007

3. R. Ramakrishnan, "Database Management Systems", McGraw Hill International Editions, 1998 References:

1. Date, Kannan, Swaminathan, "An Introduction to Database Systems", 8th Edition Pearson Education, 2007

2. Singh S.K., "Database System Concepts, design and application", Pearson Education, 2006.

3. Silberscatz, Korth, Sudarshan, "Database System Concepts", Mcgraw Hill, 6th Edition, 2006

4. W. Kim, "Modern Database Systems", 1995, ACM Press, Addision - Wesley,

5. D. Maier, "The Theory of Relational Databases", 1993, Computer Science Press, Rokville, Maryland

6. Ullman, J. D., "Principals of database systems", Galgotia publications, 1999

7. Oracle Xi Reference Manual

8. Dietrich, and Urban, "An Advanced Course in Database Systems", Pearson, 2008.

Paper: Soft Computing Employability/Enterpreneurship

Unit-I

Neural Networks: History, overview of biological Neuro-system, Mathematical Models of Neurons, ANN architecture, Learning rules, Learning Paradigms-Supervised, unsupervised and

reinforcement Learning, ANN training Algorithms-perceptions, Training rules, Delta, Back Propagation Algorithm, Multilayer Perceptron Model, Hopfield Networks, Associative Memories, Applications of Artificial Neural Networks.

Unit-II

Fuzzy Logic:

Introduction to Fuzzy Logic, Classical and Fuzzy Sets: Overview of Classical Sets, Membership Function, Fuzzy rule generation. Operations on Fuzzy Sets: Compliment, Intersections, Unions, Combinations of Operations, Aggregation Operations.

Unit-III

Fuzzy Arithmetic:

Fuzzy Numbers, Linguistic Variables, Arithmetic Operations on Intervals & Numbers, Lattice of Fuzzy Numbers, Fuzzy Equations. Fuzzy Logic:

Classical Logic, Multivalued Logics, Fuzzy Propositions, Fuzzy Qualifiers,

Uncertainty based Information:

Information & Uncertainty, Nonspecificity of Fuzzy & Crisp Sets, Fuzziness of Fuzzy

Sets. Unit-IV

Introduction of Neuro-Fuzzy Systems:

Architecture of Neuro Fuzzy Networks.

Application of Fuzzy Logic:

Medicine, Economics etc.

Genetic Algorithm:

An Overview, GA in problem solving, Implementation of GA

Text Books:

1. "Introduction to the Theory of Neural Computation", Hertz J. Krogh, R.G. Palmer, Addison-Wesley, California, 1991.

2. "Fuzzy Sets & Fuzzy Logic", G.J. Klir & B. Yuan, PHI, 1995.

3. "An Introduction to Genetic Algorithm", Melanie Mitchell, PHI, 1998.

4. "Soft computing and Intelligent System Design", F. O. Karray and C. de Silva, Pearson, 2009.

Reference:

1. "Neural Networks-A Comprehensive Foundations", Prentice-Hall International, New Jersey, 1999.

2. "Neural Networks: Algorithms, Applications and Programming Techniques", Freeman J.A. & D.M. Skapura, Addison Wesley, Reading, Mass, (1992).

Paper: Natural Language Processing Employability/Enterpreneurship

UNIT-1

Introduction to NLP

Achievement and brief history, open problems, major goal, characterstic of Language, Language structure, Language analyzer

UNIT 2

Study of grammer and semantics

Morphology, word formation, theory of semeatics, componential theory of meaning, truth conditional theory of meaning, pragmatics and discourse

UNIT 3

Machine translation Introduction, problems of machine translation. Approaches, language Accesor, Structure of Anusaraka system.

UNIT 4

Lexical; functional grammer (LFG) and Indian languages Overview of LGF, LFG formalism, well formedness conditions, computational aspects, CFG and Indian languages, functional specification., tree adjoining grammer.

BOOKS-

- 1. Natural language processing by Akshar Bhartati, Sangal and Chaitanya, Eastern Economy Edition
- 2. An introduction to Linguistics, language rammer and sematics by P.Syal and D.V.Jindal, Eastern Economy Edition

Paper Code: IT-414L:3 T/P:1 C:4Paper ID: 1514Paper: Windows .Net Framework & C# programming
Skill Development/Employability/Enterpreneurship

<u>Unit -1</u>: Introduction to Three-Tier Architecture, overview of .NET Framework, Common Language Runtime (CLR), The .NET Framework Class Library, familiarization with visual studio .NET IDE, Design Window, Code Window, Server, Explorer, Toolbox, Docking Windows, Properties Explorer, Solution Explorer, Object Browser, Dynamic Help, Task List Explorer, Features of VS.NET, XML Editor, Creating a Project, Add Reference, Build the Project, Debugging a Project

<u>Unit II</u> Introducing C# Programming, introduction, basic language constructs, types (reference and value, relations between types), delegates, generics, collections, strings, exceptions, threads, Networking

<u>Unit III :</u> Windows Forms, Adding Controls, Adding an Event Handler, Adding Controls at Runtime

Attaching an Event Handler at Runtime, Writing a Simple Text Editor, Creating a Menu Adding a New Form, Creating a Multiple Document Interface, Creating a Dialog Form Using Form Inheritance, Adding a Tab-Control, Anchoring Controls, Changing the Startup Form, Connecting the dialog, Using ListView and TreeView controls, Building an ImageList and add them to the ListView, Using details inside the ListView, Attaching a Context Menu, Adding a TreeView, Implementing Drag and Drop, Creating Controls at run time, Creating a User Control, Adding a Property, Adding Functionality, Writing a Custom Control, Testing the Control.

<u>Unit IV</u>: ADO.NET Architecture, Understanding the ConnectionObject, Building the Connection String, Understanding the CommandObject, Understanding DataReaders,Understanding DataSets and DataAdapters, DataTable, DataColumn, DataRow, Differences between DataReader Model and DataSet Model, Understanding the DataViewObject, Working with System.Data.OleDb, Using DataReaders, Using DataSets, Working with SQL.NET, Using Stored Procedures, Working with Odbc.NET, Using DSN Connection , Introducing the ASP.NET Architecture, ASP.NET Server Controls, Working with User, Controls, Custom Controls, Understanding the Web.config File, Using the Global.asax Page

Text book and References :

- 1. "Programming C#, 3rd Edition " Jesse Liberty, O'really
- 2. C# for Programmers, Deitel and Deitel, Pearson
- 3. "Understanding .NET", Chappell, David, , Addison Wesley, 2006

Table 1: Course Outcomes for Under Graduate Programmes of Studies (Compulsory evaluator courses).

Sr.No.	Paper Code	Paper Name	Course Outcomes
1	HS101	Communication Skills-I	 Ability to use tenses and concord; gerunds, participles & infinitives correctly. Ability to use antonyms and synonyms, idioms and foreign phrases correctly. Ability to compose simple technical reports. Ability to present a logical argument.
2	BA103	Chemistry – I	 Ability to understand the properties of water. Understand different types of fuels and make simple calorimetric calculations. Understand characteristic properties of polymers. Understand different types of corrosive mechanisms and its prevention.
3	IT 105	Introduction to Computers	 Ability to use computers for word processing, spreadsheet calculation, use operating system commands and understand basic structure of a computing system. Ability to describe an algorithm. Ability to write programs in 'C' using functions, arrays, structure, files etc.
4	IT 107	Electrical Science	 Ability to analyse simple DC circuit problems. Ability to analyse simple AC Circuits. Understand the working of transformers and electrical measurement devices. Understand the working of DC and AC motors.
5	BA109	Mathematics – I	 Ability to solve problems using differential and integral calculus. Ability to analyse convergence of series with emphasis of Taylor's and Maclaurin series. Ability to solve differential and integral problems of many variables. Ability to solve problems of vector calculus.
6	BA111	Physics – I	 Understanding of wave optics (Polarization, Interference and Diffraction). Understand working of different types of lasers. Understand principles and working optical fibres. Understand and be able to solve problems in special theory of relativity.
7	HS102	Communication Skills – II	 Understand the medium of communication. Ability to write technical reports and business letters. Ability to speak with clarity and fluency. Ability to participate in a group discussion and have effective listening capability.

Sr.No.	Paper Code	Paper Name	Course Outcomes
8	IT104	Engineering Mechanics	 Ability to solve problems pertaining to force systems, equilibrium and distributed systems. Ability to solve problems of friction and engineering trusses. Ability to deal with the problems of kinematics and kinetics of particle Ability to deal with the problems of kinematics and kinetics of rigid bodies.
9	BA108	Mathematics – II	 Ability to use linear algebraic techniques to solve problems. Ability to use ODE techniques to solve problems. Ability to use complex analysis techniques to solve problems. Ability to use probabilistic techniques to solve problems.
10	BA110	Physics-II	 Understand quantum mechanical systems and solve simple problems. Understand quantum statistical systems and solve simple problems. Understand and use band theory of solids to explain working of diodes and transistors. Understand how planar EM waves are generated.
11	BA114	Statistics Theory of Probability and Linear Programming	 Understand the concept of random variates (discrete and continuous). Ability to calculate moments and their usage for calculation of skewness and kurtosis measures. Ability to do data analysis using linear regression. And to use tests of hypothesis. Ability to solve simple linear programming problems using the simplex methods and problems of transportation and assignment.
12	BA118	Chemistry-II	 Understand atomic structure and electron shell structure. Understand different type of bonding mechanisms and structures. Ability to do thermo-chemistry and reaction kinetic calculations. Understand electron chemistry, catalysis phenomena and the phase rule.

Sr.No.	Paper Code	Paper Name	Course Outcomes
			1. Able to understand the concents of data
13	IT128	Data Structures	 Able to understand the concepts of data structure such as stacks, queues, linked list and their applications. Implement Binary Search Trees, Max/Min- Heaps and understand the basic concepts of self-balancing Binary Search Trees such as AVL trees. Able to understand the concept of multi- way trees (B-Tree, B+ Tree and B* Tree) and Graphs representation, traversal and their applications. Able to analyse various Sorting (Selection, Insertion, Exchange and Merging), Searching algorithms (Sequential, Binary and Hashing) and determine their time complexity.
14	IT201	Computational Methods / Computational techniques	 Ability to find roots of equations. Solve unconstrained one variable minimization problems, and multi-variate minimization problems. Ability to perform numerical interpolation, differentiation and integration. Ability to solve linear equations numerically and to approximate functions using splines. Ability to solve differential equations numerically.
15	IT203	Circuits and Systems	 Understand the classification and properties of signals and systems. Ability to use Fourier series, Fourier Transforms and Laplace transforms to analyse continuous systems while for discrete systems have ability to use Discrete Fourier Series, Discrete Time Fourier Transform and Z- Transform. Ability to analyse electrical networks with DC sources and the theorems and transformations (source and circuits) associated. Ability to analyse electrical networks with AC sources and the theorems and transformations (source and circuits) associated.
16	IT205	Electronic Devices and Circuits	 Ability to analyse PN junctions in semiconductor devices under various conditions. Ability to design and analyse simple rectifiers and voltage regulators using diodes. Ability to describe the behavior of special purpose diodes. Ability to design and analyse simple BJT and MOSFET circuits.

Sr.No.	Paper Code	Paper Name	Course Outcomes
17	IT207	Object Oriented Programming Using C++	 Ability to describe the important concepts of object oriented programming like object and class, Encapsulation, inheritance and polymorphism. Ability to write the simple object oriented programs in C++, use features of C++ like type conversion, inheritance, polymorphism, I/O streams and files to develop programs for real life problems. Ability to use advance features like templates and exception to make programs supporting reusability and sophistication. Ability to use standard template library for faster development. Ability to develop applications using object oriented programming with C++.
18	IT209	Computer Graphics	 Understand the basic computer graphics primitives as well as able to implement them. Ability to apply various transformation techniques. Ability to implement surface and edge detection and hidden edge and surface removal, shading techniques and illumination techniques. Ability to implement procedural modals, fractals, grammar based models, multi- particle systems and volume rendering.
19	IT211	Database Management Systems	 Ability to identify and define the information that is needed to design a database management system for a business information problem. Ability to create conceptual and logical database designs for a business information problem. Ability to build a database management system that satisfies relational theory and provides users with business queries. Understand the core terms, concepts, and tools of relational database management systems. Ability to create, maintain and query databases and tables.

Sr.No.	Paper Code	Paper Name	Course Outcomes
20	IT202	Java Programming	 Understand and gain knowledge of characteristics of java, its compilation, JVM as an emulator, instruction set, control flow, programming and the sandbox model. Learn the fundamentals of java programming and will apply the knowledge of exceptional handling in writing the program. Clearly understand the concepts like wrapper classes inheritance. Have sufficient knowledge about threads & thread synchronization and will thoroughly understand the AWT components and event handling mechanism. Have a clear understanding of concepts of I/O streams, IDBC, object serialization, sockets, RMI, JNI, Collection API interfaces, Vector, Stack, Hash table classes, list etc
21	IT204	Multimedia Applications	 Understand multimedia streams, systems, storage and H/W/ and S/W requirements. Understand audio, video, text and animation techniques and their amalgamation to create a multimedia system. Understand lossy and lossless compression techniques. Ability to use Maya to create multi-media applications.
22	IT206	Switching Theory and Logic Design	 Ability to understand, represent and minimize Boolean Expression for digital circuits. Ability to design circuits for multiplexers, demultiplexers, decoders and encoders, adders and subtractors, code convertors and comparators. Understand the working and design of flip- flops, shift registers, ripple counters, synchronous counters and sequence detectors. Understand the working of 555 timer and its use as mono-stable and astable multi- vibrator. Understand different logic families and their characteristics along with the knowledge of different types of memories.
23	MS208	Organization Behaviour	 different types of memories. Have an understanding of management principles and processes. Have an understanding of the organizational structure and processes Understand the behavioural dynamics in an organization. Understand how decisions are made in an organization.

Sr.No.	Paper Code	Paper Name	Course Outcomes
24	IT210	Foundations of Computer Science	 Ability to use formal logic to present a mathematical proof. Ability to perform deductive as well as inductive proofs. Understand the properties and usage of the mathematical structures and principles: Sets, operations on sets, counting principles (combinatorics), relations and functions. Understand lattices and Boolean algebra. And, also the properties of recurrence relations and growth of functions for analysis of algorithms. Understand elementary number theory and its applications. Understand the properties of the graph structures and the algorithms defined on the graph structure like spanning tree, minimal path etc.
Third Year	1		
26	IT301	Theory of Computation	 Understand the design aspects of "abstract models" of computers like Turing machines and its variants. Comprehend the recognisability (decidability) of grammar (language) with specific characteristics through these abstract models. Decide what makes some problems computationally hard and others easy? Deliberate the problems that can be solved by computers and the ones that cannot.
27	IT303	Analog and Digital Communication	 Understand the design and specifications for amplitude modulation systems. Understand the design and specifications for angle and frequency modulation. Understand the design and specifications for pulse analog modulation systems. Understand techniques of digital modulation.
28	IT305	Computer Architecture	 Ability to identify various components of computer and their interconnection and identify basic components and design of the CPU: the ALU and control unit. Ability to compare and select various Memory devices as per requirement. Ability to compare various types of IO mapping techniques Ability to critique the performance issues of cache memory and virtual memory and I/O organization

Sr.No.	Paper Code	Paper Name	Course Outcomes
29	IT307	Digital Signal Processing	 Ability to analyse Continuous and Discrete time signals/systems and evaluate the frequency response of a discrete time signals/ systems using fourier transforms. Ability to calculate Z-transforms for discrete time signals and system functions. Ability to develop Fast Fourier Transform (FFT) algorithms for faster realization of signals and systems. Ability to understand the design of Digital IIR filters and Digital FIR filter.
30	IT309	Object Oriented Software Engineering	 Ability to identify requirements, analyze and prepare models. Ability to select a suitable architecture for the project. Also plan, schedule and track the progress of the project. Ability to design and develop software project and understand the maintenance concept of object oriented systems. Ability to apply testing principles on object oriented software project and understand the methods to determine reliability in software.
31	IT311	Digital Design Using VHDL	 Ability to demonstrate the use and application of Boolean Algebra in reduction, expansion, factoring. Ability to use VHDL software to analyse and synthesize digital circuits. Ability to simulate and debug digital systems described in VHDL. Ability to synthesize complex digital circuits at several level of abstractions.
32	IT302	Microprocessors	 Understand evolutional history of microprocessors from Intel. Understand Intel 8086 architecture. Ability to program the Intel 8086 processor in assembly language. Ability to interface 8086 with semiconductor memory and other micro- controllers.
33	IT304	Computer Networks	 Understand the concepts of computer networks, OSI model and TCP/IP model. Understand the physical layer concepts and signal encoding/decoding techniques. Understand the data link layer functions and protocols. Understand standards for LAN / WAN technologies and concepts of network layer.

Sr.No.	Paper Code	Paper Name	Course Outcomes
34	IT306	Algorithm Analysis and Design	 Ability to understand time complexity and disjoint sets. Ability to differentiate between dynamic programming and greedy programming methodologies. Have a knowledge of graphs and applications of graphs. Have basic knowledge of string matching and NP complete problems using few examples of NP complete problems
35	IT 308	Compiler Design	 Understanding of concepts, techniques, and different phases used for developing a simple language compiler. Specify and analyse the lexical, syntactic and semantic structures of advanced language features. Separate the lexical, syntactic and semantic analysis into meaningful phases for a compiler to undertake language translation. Developing foundations to design a scanner, parser, and semantic analyser.
36	IT310	Operating Systems	 Understand OS types, and process management techniques. Understand CPU scheduling and process synchronization techniques. Understand Primary and Secondary memory management techniques. Understand techniques for file system management and system security and protection.
37	IT401	Advanced Computer Networks	 Understand network layer and routing protocols. Understand network address resolution protocols and IPV6. Understand transport layer protocols. Understand different application layer protocols. Understand security issues and protection methods in TCP/IP. Ability to design and implement a computer network
38	IT403	Software Testing	 Ability to describe the basic taxonomy, key techniques and its limitation in software testing. Ability to produce and execute test cases at various levels of testing using different problem solving techniques. Ability to practice several object oriented testing methods and web application testing approaches. Ability to express how to lower the time and cost of software testing while increasing the software quality.

Sr.No.	Paper Code	Paper Name	Course Outcomes
39	IT-405	Distributed Systems	 Understand the design principles in distributed systems and the architectures for distributed systems. Apply various distributed algorithms related to clock synchronization, concurrency control, deadlock detection, load balancing, voting etc. Analyze fault tolerance and recovery in distributed systems and algorithms for the same. Analyze the design and functioning of existing distributed systems and file systems.
40	IT 407	Artificial Intelligence	 To introduce AI, state space search, heuristic search and control strategies To understand knowledge representation, statistical reasoning. To understand planning and natural language processing. To introduce neural networks, fuzzy logic, genetic algorithms and overview of expert systems
41	IT409	Simulation and Modelling	 Ability to apply functional modeling method to model the activities of a static system. Ability to describe and develop equivalent model for a dynamic process. Ability to calibrate and validate developed simulation. To develop basic understanding for developing simulation for complex scenarios [systems]
42	IT411	Digital Image Processing	 Ability of students to understand the basic fundamentals of digital images and color fundamentals. Ability of students to learn various image enhancement techniques in spatial domain and frequency domain Ability of students to understand image restoration and reconstruction techniques. Ability of students to learn image segmentation, representation and description
43	IT413	Front End Design Tools and Web Technologies	 Ability to design a website using HTML, CSS and Javascript. Ability to use XML, Java Beans and EJB for development of websites. Ability to use servlets, configure webservers and use JSP. Ability to use database systems for development of interactive websites.

Sr.No.	Paper Code	Paper Name	Course Outcomes
44	IT-415	Advanced Java Programming	 learn to access database through Java programs, using JDBC and invoke the remote methods in an application using RMI Gain the knowledge of Server Side programing by implementing Servlet and JSP Understand structs framework, Combining Struts and Tile to create small applications Understand the multi-tier architecture of web-based enterprise applications using Enterprise JavaBeans (EJB).
45	IT-417	Embedded System Design	 To introduce the Building Blocks of Embedded System To Educate in Various Embedded Development Strategies To Introduce Bus Communication in processors, Input/output interfacing. To impart knowledge in various processor scheduling algorithms and to introduce Basics of Real time operating system and example tutorials to discuss on one real time operating system tool
46	IT-419	Wireless & Mobile Communication	 Demonstrate knowledge on: cellular concepts like frequency reuse, fading, equalization, GSM ,CDMA Demonstrate knowledge hand-off and interface and apply the concept to calculate link budget using path loss model Demonstrate knowledge equalization and different diversity techniques. Compare different multiple access techniques in mobile communication.
47	HS-402	Technical Writing	 Develop effective research paper writing skills which has good level of readability in scientific community. Learn to Structure Research Papers Understand the skills needed when writing scientific descriptions Ensure about the ethics and etiquettes of work culture
48	IT-404	Advanced Computer Architecture	 Ability of students to understand concept of parallel computing and hardware technologies. Ability of students to differentiate control flow, data flow, demand driven mechanisms. Ability of students to understand the principles of scalable performance, and advanced processor architectures. Ability of students to the basics of instruction pipelining and memory technologies.

Sr.No.	Paper Code	Paper Name	Course Outcomes
49	IT-406	Control Systems	 Familiarization with various components and building blocks of a control system and their transfer function in open loop as well as closed loop configurations. Time domain analysis (Transient as well as steady state) as also knowledge of error constant. Frequency Domain Analysis, specifications and graphical methods to study stability of the system in terms of its parameters/variables. Algebraic and graphical techniques to analysis various systems for stable operation. Concept of controllers and compensation methods to achieve desirable performance of the system.
50	IT-408	Advanced Database Management Systems	 To be able to understand the advanced concepts of relational database systems To be able to have in-depth knowledge of query processing and transaction processing. To have knowledge of other types of databases like Parallel, Distributed and object oriented To have basic knowledge of data warehousing and data mining.
51	IT410	Soft Computing	 Understand soft computing techniques like Neural Networks and their role in problem solving. Conceptualize and parameterize various problems to be solved through basic soft computing techniques in Fuzzy systems Analyze and integrate various Evolutionary algorithms in order to solve problems effectively and efficiently. Understand use of Rough sets and Hybrid Systems in problem solving
52	IT-412	Natural language Processing	 Ability of students to understand true meaning of NLP Ability of students to understand the aspects of grammar in NLP Ability of students to understand usage of Machine Transalation Ability of students to understand NLP in Indian Context for Indian Languages.

Sr.No.	Paper Code	Paper Name	Course Outcomes
53	IT-414	Windows .Net Framework & C# programming	 understand .NET Framework , Common Language Runtime (CLR) and familiarization with visualstudio .NET IDE build applications on .NET platform by understanding the syntax and semantics of C# develop dynamic web applications, create and consume web services
			 4. use appropriate data sources and data bindings in .NET web applications

Guidelines for B.Tech CSE (Labs based on Theory Papers).

Semester 1:

Paper Code: BA 151

Subject: Chemistry – I Lab

This Lab Course will be based on Chemistry I. The concerned teacher shall announce the list of practicals in the first week of teaching. Atleast ten practicals have to be performed by the students studying for this paper.

Paper Code: BA 153

Subject: Physics – I Lab

This Lab Course will be based on Physics I. The concerned teacher shall announce the list of practicals in the first week of teaching. Atleast ten practicals have to be performed by the students studying for this paper.

Paper Code: IT155

Subject: Computer Lab

This Lab Course will be based on Introduction to Computers (IT 105). The concerned teacher shall announce the list of practicals in the first week of teaching. Atleast ten practicals have to be performed by the students studying for this paper.

Paper Code: BA 157

Subject: Engineering Graphics - I

This Lab Course will be based on Engineering Graphics. The concerned teacher shall announce the list of practicals in the first week of teaching. Atleast ten practicals have to be performed by the students studying for this paper so that every student has the ability to project points and lines on reference planes, ability to project on planes other than reference planes, ability to project plane figures, ability to project of solids, sections and surfaces.

Paper Code: IT159

Subject: Computer Lab

This Lab Course will be based on Electrical Science Lab. The concerned teacher shall announce the list of practicals in the first week of teaching. Atleast ten practicals have to be performed by the students studying for this paper.

Semester 2:

Paper Code: IT152

Subject: Data Structure Lab

This Lab Course will be based on Data Structures (IT 128). The concerned teacher shall announce the list of practicals in the first week of teaching. Atleast ten practicals have to be performed by the students studying for this paper.

Paper Code: BA 156

Subject: Physics – II Lab

This Lab Course will be based on Physics II. The concerned teacher shall announce the list of practicals in the first week of teaching. Atleast ten practicals have to be performed by the students studying for this paper.

Paper Code: BA 162

Subject: Chemistry – II Lab

This Lab Course will be based on Chemistry II. The concerned teacher shall announce the list of practicals in the first week of teaching. Atleast ten practicals have to be performed by the students studying for this paper.

Paper Code: BA 154

Subject: Engineering Graphics - II

This Lab Course will be based on Engineering Graphics. The concerned teacher shall announce the list of practicals in the first week of teaching. Atleast ten practicals have to be performed by the students studying for this paper so that every student has the ability to perspective, orthographic, isometric and oblique projections, ability to sketch and describe shapes using techniques of 1st and 3rd angle projections, glass-box concept, Ability to describe size (dimensioning) and Elementary understanding of CAD.

Semester 3:

Paper Code: IT251

Subject: Electronic Devices and Circuits Lab.

This Lab Course will be based on Electronic Devices and Circuits (IT 205). The concerned teacher shall announce the list of practicals in the first week of teaching. Atleast ten practicals have to be performed by the students studying for this paper.

Paper Code: IT253

Subject: Computation Lab.

This Lab Course will be based on Computational Methods (IT 201). The concerned teacher shall announce the list of practicals in the first week of teaching. Atleast ten practicals have to be performed by the students studying for this paper.

Paper Code: IT255

Subject: Object Oriented Programming Lab.

This Lab Course will be based on Object Oriented Programming Using C++ (IT 207). The concerned teacher shall announce the list of practicals in the first week of teaching. Atleast ten practicals have to be performed by the students studying for this paper.

Paper Code: IT257

Subject: Computer Graphics Lab.

This Lab Course will be based on Computer Graphics (IT 209). The concerned teacher shall announce the list of practicals in the first week of teaching. Atleast ten practicals have to be performed by the students studying for this paper.

Paper Code: IT259

Subject: DBMS Lab.

This Lab Course will be based on Database Management Systems (IT 211). The concerned teacher shall announce the list of practicals in the first week of teaching. Atleast ten practicals have to be performed by the students studying for this paper.

Semester 4:

Paper Code: IT252

Subject: Java Programming Lab.

This Lab Course will be based on Java Programming (IT 202). The concerned teacher shall announce the list of practicals in the first week of teaching. Atleast ten practicals have to be performed by the students studying for this paper.

Paper Code: IT254

Subject: Multimedia Lab.

This Lab Course will be based on Multimedia Applications (IT 204). The concerned teacher shall announce the list of practicals in the first week of teaching. Atleast ten practicals have to be performed by the students studying for this paper.

Paper Code: IT256

Subject: Switching Theory and Logic Design Lab.

This Lab Course will be based on Switching Theory and Logic Design (IT 206). The concerned teacher shall announce the list of practicals in the first week of teaching. Atleast ten practicals have to be performed by the students studying for this paper.

Paper Code: IT258

Subject: Software Engineering Lab.

This Lab Course will be based on Software Engineering (IT 212). The concerned teacher shall announce the list of practicals in the first week of teaching. Atleast ten practicals have to be performed by the students studying for this paper.

Semester 5:

Paper Code: IT351

Subject: Analog and Digital Communication Lab

This Lab Course will be based on Analog and Digital Communication Lab (IT 303). The concerned teacher shall announce the list of practicals in the first week of teaching. Atleast ten practicals have to be performed by the students studying for this paper.

Paper Code: IT353

Subject: Digital Signal Processing Lab.

This Lab Course will be based on Digital Signal Processing (IT 307). The concerned teacher shall announce the list of practicals in the first week of teaching. Atleast ten practicals have to be performed by the students studying for this paper.

Paper Code: IT355

Subject: Digital Design Lab

This Lab Course will be based on Digital Design Lab (IT 311). The concerned teacher shall announce the list of practicals in the first week of teaching. Atleast ten practicals have to be performed by the students studying for this paper.

Paper Code: IT357

Subject: Summer Training (Conducted at the end of the 4thSemester) Report, Seminar and Viva - Voce Students will undergo summer training/industry visit/In-house training/In-house project during the summer break after the completion of sixth semester. Report of the same is required to be submitted to the school. Viva-voce examination will be conducted based on the report submitted by the student. A panel of examiner will be appointed by the Dean, USIT.

Semester 6:

Paper Code: IT352

Subject: Microprocessor Lab.

This Lab Course will be based on Microprocessors (IT 302). The concerned teacher shall announce the list of practicals in the first week of teaching. Atleast ten practicals have to be performed by the students studying for this paper.

Paper Code: IT354

Subject: Algorithm Analysis & Design Lab.

This Lab Course will be based on Algorithm Analysis & Design (IT 306). The concerned teacher shall announce the list of practicals in the first week of teaching. Atleast ten practicals have to be performed by the students studying for this paper.

Paper Code: IT356

Subject: Compiler Design Lab.

This Lab Course will be based on Compiler Design (IT 308). The concerned teacher shall announce the list of practicals in the first week of teaching. Atleast ten practicals have to be performed by the students studying for this paper.

Semester 7:

Paper Code: IT451

Subject: ACN Lab.

This Lab Course will be based on Advanced Computer Networks (IT 401). The concerned teacher shall announce the list of practicals in the first week of teaching. Atleast ten practicals have to be performed by the students studying for this paper.

Paper Code: IT455

Subject: Laboratory work for electives

This Lab Course will be based on the electives chosen by then students. The concerned teacher shall announce the list of practicals in the first week of teaching. Atleast ten practicals have to be performed by the students studying for this paper.

Paper Code: IT461

Subject: Software Testing Lab

This Lab Course will be based on Software Testing Lab (IT 403). The concerned teacher shall announce the list of practicals in the first week of teaching. Atleast ten practicals have to be performed by the students studying for this paper.

Paper Code: IT457

Subject: Minor Project

This course is corresponding to the minor project that students have to complete in seventh semester.

Paper Code: IT459

Subject: Summer Training (Conducted at the end of the 6th Semester) Report, Seminar and Viva - Voce

Students will undergo summer training/industry visit/In-house training/In-house project during the summer break after the completion of sixth semester. Report of the same is required to be submitted to the school. Viva-voce examination will be conducted based on the report submitted by the student. A panel of examiner will be appointed by the Dean, USIT.

Semester 8:

Paper Code: IT452

Subject: Major Project (Report)

This course is corresponding to the major project that students have to complete in the eighth semester. Report of the same is required to be submitted by the student.

Paper Code: IT454

Subject: Viva – Voce (On major project) Viva-voce examination will be conducted based on the report of the major project submitted by the student,

Paper Code: IT456

Subject: Seminar and progress report This paper will be based on project work (IT-452). Seminar will be held in the school for the purpose of evaluation of the progress of the project work.

Paper Code: IT458

Subject: Laboratory work for electives

This lab will be based on elective paper(s). The concerned teacher shall announce the list of practicals in the first week of teaching. At least ten practicals have to be performed by the students studying for this paper.